## Exam 3 Solutions

1. Suppose $f(z)=u(x, y)+i v(x, y)$ is entire. Determine which statements are necessarily true.
(a) $\int_{C} f(z) d z=0$, where $C$ is any closed contours $C \mathbb{C}$. TRUE
(b) $v$ is a harmonic conjugate of $u$. TRUE
(c) $f$ has an antiderivative on $\mathbb{C}$. TRUE
(d) $f$ is bounded. FALSE
(e) $f^{\prime \prime \prime}(z)$ exists at all points $z \in \mathbb{C}$. TRUE
(f) $|f(z)|$ has no minimum. FALSE
(g) $u_{x x}-v_{x y}=0$. TRUE
2. Suppose $f$ is an entire function such that $f^{\prime}(0)=1+i$. Show that $f$ is not bounded.

Solution: Since $f^{\prime}(0)=1+i, f$ is not a constant function. Thus by Liouville's Theorem, $f$ cannot be bounded.
3. Consider the contours $C, C_{1}, C_{2}$, and $C_{3}$ depicted below.


Fill in the blanks: If $f$ is analytic on the region enclosed by the contours and on the contours, then

$$
\int_{C} f(z) d z=\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z+\int_{C_{3}} f(z) d z
$$

4. Let $C$ be the negatively-oriented circle $|z|=5$. Evaluate $\int_{C} \frac{e^{2 z}}{\left(z-\frac{\pi}{4} i\right)^{n}} d z$ for all integers $n \geq 0$. Explain your reasoning and simplify your answer (your answer will depend on $n$ ).

## Solution:

If $n=0$, then $\int_{C} \frac{e^{2 z}}{\left(z-\frac{\pi}{4} i\right)^{0}} d z=\int_{C} e^{2 z} d z=0$, by the Cauchy-Goursat Theorem.

Let $n \geq 1$. Then since $f(z)=e^{2 z}$ is analytic on and inside $C$ and $\frac{\pi}{4} i$ is interior to $C$, which is negatively-oriented, by the Cauchy Integral Formula (for derivatives),

$$
\int_{C} \frac{e^{2 z}}{\left(z-\frac{\pi}{4} i\right)^{n}} d z=-\frac{2 \pi i}{(n-1)!} f^{(n-1)}\left(\frac{\pi}{4} i\right)=-\frac{2 \pi i 2^{n-1} e^{\frac{\pi}{2} i}}{(n-1)!}=\frac{2^{n} \pi}{(n-1)!}
$$

5. Show that the complex series $\sum_{n=1}^{\infty} \frac{3 i}{n^{2} 2^{n}}(z-i)^{n}$ converges on the disk $|z-i| \leq 2$ and diverges when $|z-i|>2$ ? Explain your reasoning.

## Solution:

First, $\lim _{n \rightarrow \infty}\left|\frac{\frac{3 i}{(n+1)^{2} 2^{n+1}}(z-i)^{n+1}}{\frac{3 i}{n^{2} 2^{n}}(z-i)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n^{2}}{2(n+1)^{2}}|z-i|=\frac{1}{2}|z-i|$.
By the ratio test, the series converges if $\frac{1}{2}|z-i|<1$, or $|z-i|<2$, and diverges if $\frac{1}{2}|z-i|>1$, or $|z-i|>2$.
Now, when $|z-i|=2, \sum_{n=1}^{\infty}\left|\frac{3 i}{n^{2} 2^{n}}(z-i)^{n}\right|=\sum_{n=1}^{\infty} \frac{|3 i|}{n^{2} 2^{n}}|z-i|^{n}=\sum_{n=1}^{\infty} \frac{3}{n^{2}}$, which converges by the $p$-series test. Therefore $\sum_{n=1}^{\infty} \frac{3 i}{n^{2} 2^{n}}(z-i)^{n}$ is absolutely convergent and thus convergent on $|z-i|=2$.
Putting this all together, we have shown that the series converges on the disk $|z-i| \leq 2$ and diverges when $|z-i|>2$.

