Exam 3 Solutions

- 1. Suppose f(z) = u(x, y) + iv(x, y) is entire. Determine which statements are necessarily true.
 - (a) $\int_C f(z) dz = 0$, where C is any closed contours C \mathbb{C} . TRUE
 - (b) v is a harmonic conjugate of u. TRUE
 - (c) f has an antiderivative on \mathbb{C} . TRUE
 - (d) f is bounded. FALSE
 - (e) f'''(z) exists at all points $z \in \mathbb{C}$. TRUE
 - (f) |f(z)| has no minimum. FALSE
 - (g) $u_{xx} v_{xy} = 0$. TRUE
- 2. Suppose f is an entire function such that f'(0) = 1 + i. Show that f is not bounded.

Solution: Since f'(0) = 1 + i, f is not a constant function. Thus by Liouville's Theorem, f cannot be bounded.

3. Consider the contours C, C_1, C_2 , and C_3 depicted below.

Fill in the blanks: If f is <u>analytic</u> on the region enclosed by the contours and on the contours, then

$$\int_C f(z) dz = \int_{C_1} f(z) dz - \int_{C_2} f(z) dz + \int_{C_3} f(z) dz$$

4. Let C be the negatively-oriented circle |z| = 5. Evaluate $\int_C \frac{e^{2z}}{(z - \frac{\pi}{4}i)^n} dz$ for all integers $n \ge 0$. Explain your reasoning and simplify your answer (your answer will depend on n).

Solution:

If
$$n = 0$$
, then $\int_C \frac{e^{2z}}{(z - \frac{\pi}{4}i)^0} dz = \int_C e^{2z} dz = 0$, by the Cauchy-Goursat Theorem.

Let $n \ge 1$. Then since $f(z) = e^{2z}$ is analytic on and inside C and $\frac{\pi}{4}i$ is interior to C, which is **negatively-oriented**, by the Cauchy Integral Formula (for derivatives),

$$\int_C \frac{e^{2z}}{(z - \frac{\pi}{4}i)^n} \, dz = -\frac{2\pi i}{(n-1)!} f^{(n-1)}(\frac{\pi}{4}i) = -\frac{2\pi i 2^{n-1} e^{\frac{\pi}{2}i}}{(n-1)!} = \frac{2^n \pi}{(n-1)!}$$

5. Show that the complex series $\sum_{n=1}^{\infty} \frac{3i}{n^2 2^n} (z-i)^n$ converges on the disk $|z-i| \le 2$ and diverges when |z-i| > 2? Explain your reasoning.

Solution:

First,
$$\lim_{n \to \infty} \left| \frac{\frac{3i}{(n+1)^2 2^{n+1}} (z-i)^{n+1}}{\frac{3i}{n^2 2^n} (z-i)^n} \right| = \lim_{n \to \infty} \frac{n^2}{2(n+1)^2} |z-i| = \frac{1}{2} |z-i|.$$

By the ratio test, the series converges if $\frac{1}{2}|z-i| < 1$, or |z-i| < 2, and diverges if $\frac{1}{2}|z-i| > 1$, or |z-i| > 2.

Now, when
$$|z-i| = 2$$
, $\sum_{n=1}^{\infty} \left| \frac{3i}{n^2 2^n} (z-i)^n \right| = \sum_{n=1}^{\infty} \frac{|3i|}{n^2 2^n} |z-i|^n = \sum_{n=1}^{\infty} \frac{3}{n^2}$, which converges

by the *p*-series test. Therefore $\sum_{n=1}^{\infty} \frac{3i}{n^2 2^n} (z-i)^n$ is absolutely convergent and thus convergent on |z-i| = 2.

Putting this all together, we have shown that the series converges on the disk $|z - i| \le 2$ and diverges when |z - i| > 2.