Homework 10 Solutions
1.) a) $\frac{4}{3-z}=\frac{4}{2-(z-1)}=2 \frac{1}{1-\frac{z-1}{2}}=2 \sum_{n=0}^{\infty}\left(\frac{z-1}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{z^{n-1}}(z-1)^{n}$, where $\left|\frac{z-1}{2}\right|<1 \Rightarrow|z-1|<2$
b)

$$
\begin{aligned}
\cos (i z+1) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{i z+1)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} i^{2 n}(z-i)^{2 n}}{(2 n)!} \\
& =\sum_{n=0}^{\infty} \frac{\left.(-1)^{2 n}\right)(z-i)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{(z-i)^{2 n}}{(2 n)!},
\end{aligned}
$$

where $|i z+1|<\infty \Rightarrow|z-i|<\infty$
2.) a) $f(z)=\tan z=\frac{\sin z}{\cos z}$ is analytic everywhere except when $\cos z=0$, which is when $z= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$ Thus f is analytic in the disk $|z|<\frac{\pi}{2}$ and by Taybor's the, the Maclawin series converges to $\operatorname{ton} z$ at all points in $|z|<\frac{\pi}{2}$. $\Rightarrow|z|=\frac{\pi}{2}$ is the largest circle within which the seines converges to $\tan z$.
b)

$$
\begin{aligned}
f(0) & =0 \\
f^{\prime}(0) & =\sec ^{2}(0)=1 \\
f^{\prime \prime}(0) & =2 \sec ^{2}(0) \tan (0)=0 \\
f^{\prime \prime \prime}(0) & =4 \sec ^{2}(0) \tan ^{2}(0)+2 \sec ^{4}(0)=2
\end{aligned}
$$

Thus the first 2 nonzero terms are $\frac{f^{\prime}(0)}{1!} z=z$ and $\frac{f^{(3)}(0)}{3!} z^{3}=\frac{2}{3!} z^{3}=\frac{1}{3} z^{3}$.
3) The Maclamin series for $z e^{z^{2}}$ is $z e^{z^{2}}=z\left(\sum_{n=0}^{n}\left(\frac{\left(z^{2}\right)^{n}}{n!}\right)=\sum_{n=0}^{n} \frac{z^{2 n+1}}{n!}\right.$. The general formula is $\sum_{n=0}^{a} \frac{f^{(n)}(0)}{n!} z^{n}$, where $f(z)=z e^{z^{2}}$ Since $\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{n!}$ has no even power terms, The $(2 n)^{\text {th }}$ term of the series is $\frac{f(2 n)(0)}{(2 n)!} z^{2 n}=0 \cdot z^{2 n}$ $\Rightarrow f^{(2 n)}(0)=0$ for all $n \geq 0$

The $(2 n+1)^{\text {th }}$ term of the series is $\frac{f^{(2 n+1)}(0)}{(2 n+1)!} z^{2 n+1}=\frac{1}{n!} z^{2 n+1}$

$$
\Rightarrow f^{(2 n+1)}(0)=\frac{(2 n+1)!}{n!}=(2 n+1)(2 n)(2 n-1) \cdots(n+1)
$$

4.) a) $\frac{1}{z^{2}} \cosh z=\frac{1}{z^{2}} \sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{z^{2 n-2}}{(2 n)!}, \quad 0<|z|<\infty$
6) $\frac{4}{3 z^{3}+4 z^{2}}$ is analytic every cher except when $3 z^{3}+4 z^{2}=z^{2}(3 z+4)=0 \Leftrightarrow z=-\frac{4}{3}, 0$
Thus there are laurent series expansions on $O<|z|<\frac{4}{3}$ and on $|z|>\frac{4}{3}$

We must consider each region separately.

- When $0<|z|<\frac{4}{3}$:

$$
\begin{aligned}
\frac{4}{3 z^{3}+4 z^{2}} & =\frac{4}{z^{2}} \frac{1}{3 z-4}=-\frac{1}{z^{2}} \frac{1}{1-\left(-\frac{3}{4} z\right)} \\
& =-\frac{1}{z^{2}} \sum_{n=0}^{\infty}\left(-\frac{3}{4} z\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 3^{n} z^{n-2}}{4^{n}}
\end{aligned}
$$

- When $|z|>\frac{4}{3}$, then $\left|\frac{1}{z}\right|<\frac{3}{4} \Rightarrow\left|\frac{4}{3 z}\right|<1$

$$
\begin{gathered}
\Rightarrow \frac{4}{3 z^{3}+4 z^{2}}=\frac{4}{z^{3}} \frac{1}{3+\frac{4}{z}}=\frac{4}{3 z^{3}} \frac{1}{1-\left(-\frac{4}{3 z}\right)}=\frac{4}{3 z^{3}} \sum_{n=0}^{\infty}\left(\frac{-4}{3 z}\right)^{n} \\
=\sum_{n=0}^{\infty} \frac{\left(-1-4^{n+1}\right.}{3^{n+1} z^{n+3}}
\end{gathered}
$$

c) $\sin \left(\frac{1}{z^{3}}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(\frac{1}{z^{3}}\right)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!z^{6 n+3}}, 0<|z|<\infty$
5.) a) $\sum_{n=0}^{\infty} \frac{z^{2 n-2}}{(2 n)!}=\frac{1}{z^{2}}+\frac{1}{2}+\frac{z^{2}}{4!}+\frac{z^{4}}{6!}+\cdots$

Since the largest negative exponent is 2, $z=0$ is a pole of order 2 .
b) On the detected neighborhood $0<|z|<\frac{4}{3}$,

$$
\sum_{n=0}^{a} \frac{(-1)^{n+1} 3^{n}}{4^{n}} z^{n-2}=-\frac{1}{z^{2}}+\frac{3}{4} \frac{1}{z}-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3} z+\cdots
$$

$\Rightarrow z=0$ is a pole of order 2 .
c) $\sum_{n=0}^{n} \frac{(-1)^{n}}{\left(R_{n+1)}!z^{6 n+3}\right.}$ has infinitely many tams with negative exponents
$\Rightarrow z=0$ is an essential singularity,
6.) a) Since every point on the negative real axis is a singularity of $\log z, \log z$ is not analytic on any annular neighborhood of 0 . So, laurent's theorem doesn't apply.
b) No, for the sarre reason as for part (a).
c) y_{s}. If $z_{0} \neq O$ is anypoint not on the negative real axis, then $\log z$ is analytic at z_{0}. thus, by definition, $\log z$ is analytic on an ε-neighborhood of $z_{0},\left|z-z_{0}\right|<\varepsilon$. By Taylor's the, $\log z$ ' has a Taylor sevres representation for all z in $\left|z-z_{0}\right|<\varepsilon$.

