Homework 4 Solutions

P.70 1.) (d) Use Cauchy-Riemann equations to show $f(z) = e^{e^{-iy}}$ is not differentiable anywhere. f(z)=exe^{-iy}= exasy - iexsiny let u(xig) = excosy, v(xig) = -exsing then $U_x = e^x \cos y$, $u_y = -e^x \sin y$ $V_x = -e^x \sin y$, $V_y = -e^x \cos y$ /f U_x = Vy and Uy = -U_x, then
 cosy = -cosy and -siny = siny
 => cosy = 0 and siny = 0
 => y = (2K+1)II and y = NIC for some KINER. Thus y is both an even and odd multiple of TT, which is not possible. Thus the Cauchy-Riemann equations are not satisfied at any points. 3.) Determine where f'(z) exists and find its value when (a) $f(z) = \frac{1}{2}$ (b) $f(z) = x^2 + iy^2$ (c) $f(z) = z \ln z$ $(\alpha) \stackrel{\perp}{=} = \frac{1}{x + iy} \cdot \frac{x - iy}{x - iy} = \frac{x}{x^2 + y^2} - \frac{y}{x^2 + y^2}i$ First note that flo) is undefined. Thus f'(0) does not exist. Now suppose Z =0.

let
$$u[x_iy] = \frac{x}{x^2+y^2}$$
 and $v(x_iy) = -\frac{y}{x^2+y^2}$.
Then $u_x = -\frac{x^2+y^2}{(x^2+y^2)^2}$, $u_y = -\frac{2xy}{(x^2+y^2)^2}$, $v_y = -\frac{x^2+y^2}{(x^2+y^2)^2}$
and SD $u_x = v_y$ and $u_y = -v_x$
Moreover, $u_{x,1}u_y$, $v_{x,1}v_y$ all exist evenywhere except (0,0)
and are continuous evenywhere except (0,0).
Thus, $f'(z) = xxists$ for all $z \neq 0$ and
 $f'(z) = u_x + iv_x = -\frac{x^2+y^2}{(x^2+y^2)^2} + i\frac{2\pi y}{((x^2+y^2)^2)^2} = \frac{-1}{(x+iy)^2} = \frac{-1}{(x+iy)^2} = \frac{-1}{2^2}$
(b) $f(z) = x^2 + iy^2$
Let $u(x_iy) = x^2$ and $v(x_iy) = y^2$
Then $u_x = 2x$, $u_y = 0$, $v_x = 0$, $v_y = 2y$
Ar $x \neq y$, then $u_x \neq v_y$.
Aus f is not differentiable when $x \neq y$.
Are y, then $u_x = v_y$ and $u_y = -v_x$.
Moreover the partial durivatives exist and are
continuous everywhere. Thus $f'(z) = x_i + iv_x = 2x$

(c) $f(z) = z lm z = (x + iy)y = xy + iy^{2}$

Let
$$u(x_iy) = xy$$
, $v(x_iy) = y^2$
Then $u_x = y$, $u_y = x$, $u_k = 0$, $u_y = 2y$
If $x \neq 0$ or $y \neq 0$, then the Cauchy-Riemann
equations are not satisfied. Thus f is not differentiable
when $z \neq 0$.
When $z = 0$, then $x = y = 0$ and so $u_x = v_y$, $u_y = -v_x$.
Moreover, $u_{x_i}u_{y_i}, v_{x_i}u_{y_j}$ exist near (90) and are continuous at (90)
Thus f'(6) exists and f'(0) = $u_x(0, v) + i v_k(90) = 0$.

4.) (a) Use poler coordinates to show
$$f(z) = \frac{1}{z^4}$$
 $(z \neq 0)$ is
differentiable and find $f'(z)$.

$$f(z) = \frac{1}{z^4} = \frac{1}{r^4} e^{-i^{40}} = \frac{1}{r^4} \cos(4\theta) - \frac{1}{r^4} \sin(4\theta)$$
Let $u(r_1\theta) = \frac{1}{r^4} \cos(4\theta)$, $v(r_1\theta) = -\frac{1}{r^4} \sin(4\theta)$
Men:
 $U_r = -\frac{4\cos(4\theta)}{r^5}$, $u_{\theta} = -\frac{4\sin(4\theta)}{r^4}$, $V_r = \frac{4\sin(4\theta)}{r^5}$, $V_{\theta} = -\frac{4\cos(4\theta)}{r^4}$
Moreover, $ru_r = v_{\theta}$ and $u_{\theta} = -rv_r$
Moreover, $ru_r = v_{\theta}$ and $u_{\theta} = -rv_r$
Muss $f'(z) = e^{-i\theta}(u_r + iv_r) = e^{-i\theta}\left(-\frac{4\cos(4\theta)}{r^5} + i\left(\frac{4\sin(4\theta)}{r^5}\right)\right)$
 $= -\frac{4e^{-i\theta}}{r^5}(\cos 4\theta - i\sin 4\theta) = -\frac{4e^{-i\theta}}{r^5} = -\frac{4e^{-i5\theta}}{r^5}$
 $= -\frac{4}{r^5} = -\frac{4}{25}$

P.76 1.)(a) Shas that flz= 3x+y + i (3y-x) is entire let u(xiy)=3x+y, V(x,y)=3y-x then Ux=3, uy=1, Vx=-1, Vy=3 Since Ux=Vy and Uy=-Vx at all points and Ux, Vx, Uy, Vy exist and are continuous evenywhere, f is differentiable everywhere

Thus f is entire.

2.) (a) Show that f(z) = xy+iy is nowhere analytic let U(xiy)= xy and V(ky)= g. Then $U_x = y$, $U_y = x$, $V_x = 0$, $V_g = 1$ If (X,y) + (0,1), then the Canchy Riemann equations are not satisfied, Thus F(Z) does not exist when 27 i. Thus fis not analytic when 24 i Since ux, uy, Vx, vy exist near (0,1) and are continuous at (0,1), f'(i) exists, However, f is not analytic at i since f is not differentiable at all points near i 7.) Let f be analytic everywhere in a domain D. Prove that if f(z) EIR for all zeD, then f(z) is Constant throughout D. Since f(z) e IR, f(z)= u(x,y) + iv(x,y), where v(x,y)=0. Since f'(2) exists everywhere, the Cauchy-Riemann equations are satisfied: $U_x = V_y = 0$, $U_y = V_x = 0$. and $f'(z) = U_x + iv_x = 0$ evenywhere on D. Thus f is constant on D. P.G 4.) Show that log(i2) ≠ 2 log(i) on the branch logz= lnr+i ∂ (r>0, 5, co< 14) $log(i^2) = log(-1) = ln | + i(3\pi) = 3\pi i$

 $2\log(i) = 2(\ln 1 + i \operatorname{St}) = \operatorname{St} i$ $1 \operatorname{hus} \log(i^{*}) = 3\pi i \neq \operatorname{St} i^{*} = 2\log(i)$ on this branch

p.107: 1.) Show that $\frac{d}{d^2}(sm^2) = cos z$ and $\frac{d}{dr}(cos z) = -sin z$ $\frac{d}{dz}(s_{n}z) = \frac{d}{dz}\left(\frac{e^{iz}-e^{-iz}}{z_{i}}\right) = \frac{ie^{iz}+ie^{-iz}}{z_{i}} = \frac{e^{iz}+e^{-iz}}{z} = \cos z$ $\frac{d}{dz}(\cos z) = \frac{d}{dz}\left(\frac{e^{iz}+e^{-iz}}{z}\right) = \frac{ie^{iz}-ie^{iz}}{z} = -\frac{e^{iz}-e^{-iz}}{zi} = -\sin z$

Addition Problems l.)@ let I, be the line from 0 to 2 and by the line from I to Z. By basic geometry, the lines are parallel, have the same lingth, r, and intersect the real axis at the same angle, O In the other quedrants we have similer pictures $\frac{z-1}{2}$

(f) An attempt:

(b) AS 2→B from above, O, → Dand Oz→TT → O1-O2→T As 2-> B from below, O, -> O and Oz -> - T => O, -Oz -> - T As Z > B' from above or below, 0, >0 and 02 -0 = 0, -02 - 0 As 2 > 18" from above or below, Q > IT and Dz > IT => Q-Qz > 0

(c) Since G(z) -> In/2-11+it as z->B from above and G(2) -> In/2-1/-it as z -> B from below, G is not continuous on B.

(e) No way.