Homeurork 4 Solutions
p. 70
1.) (d) Use Cauchy-Riemonn equations to show $f(z)=e^{x} e^{-i y}$ is not differentiable anywhere.

$$
f(z)=e^{x} e^{-i y}=e^{x} \cos y-i e^{x} \sin y
$$

Let $u(x, y)=e^{x} \cos y, \quad v(x, y)=-e^{x} \sin y$
then

$$
\begin{aligned}
& u_{x}=e^{x} \cos y, u_{y}=-e^{x} \sin y \\
& v_{x}=-e^{x} \sin y, \quad v_{y}=-e^{x} \cos y
\end{aligned}
$$

If $u_{x}=v_{y}$ and $u_{y}=-v_{x}$, then

$$
\cos y=-\cos y \text { and }-\sin y=\sin y
$$

$\Rightarrow \cos y=0$ and $\sin y=0$
$\Rightarrow y=\frac{(2 k+1) \pi}{2}$ and $y=n \pi$ for some $k_{1} n \in \mathbb{Z}$.
Thus y is both an even and odd multiple of π, which is not possible.

Thus the Cauchy-Riemann equations are not satisfied at any points.
3.) Determine where $f^{\prime}(z)$ exists and find its value when
(a) $f(z)=\frac{1}{z}$
(b) $f(z)=x^{2}+i y^{2}$
(c) $f(z)=z \ln z$
(a) $\frac{1}{z}=\frac{1}{x+i y} \cdot \frac{x-i y}{x-i y}=\frac{x}{x^{2}+y^{2}}-\frac{y}{x^{2}+y^{2}} i$

First note that $f(0)$ is undefined. Thus $f^{\prime}(0)$ does not exist. Now suppose $z \neq 0$.

Let $u(x, y)=\frac{x}{x^{2}+y^{2}}$ and $v(x, y)=-\frac{y}{x^{2}+y^{2}}$.
Then $u_{x}=\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, u_{y}=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, v_{x}=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, v_{y}=\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$
and so $u_{x}=v_{y}$ and $u_{y}=-v_{x}$
Moreover, $u_{x}, u_{y}, v_{x}, v_{y}$ all exist evenywhere except (0,0) and are continuous everywhere except $(0,0)$.
Thus, $f^{\prime}(z)$ exists for all $z \neq 0$ and

$$
f^{\prime}(z)=u_{x}+i v_{x}=\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}+i \frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{(x-i y)^{2}}{((x+i y)(x-i y))^{2}}=\frac{-1}{(x+i y)^{2}}=\frac{-1}{z^{2}}
$$

(b) $f(z)=x^{2}+i y^{2}$

Let $u(x, y)=x^{2}$ and $v(x, y)=y^{2}$
Then $u_{x}=2 x, \quad u_{y}=0, \quad v_{x}=0, \quad v_{y}=2 y$
If $x \neq y$, then $u_{x} \neq v_{y}$.
Thus f is not differentiable when $x \neq y$.
If $x=y$, then $u_{x}=v_{y}$ and $u_{y}=-v_{x}$.
Moreover the partial derivatives exist and are continuous everywhere. Thus $f^{\prime}(z)$ exists whenever $x=y$ and $f(z)=u_{x}+i v_{x}=2 x$
(c) $f(z)=z \operatorname{lm} z=(x+i y) y=x y+i y^{2}$

Let $u(x, y)=x y, \quad v(x, y)=y^{2}$
Then $u_{x}=y, \quad u_{y}=x, \quad v_{x}=0, v_{y}=2 y$
If $x \neq 0$ or $y \neq 0$, then the Cauchy-Riemann
equations are not satisfied. Thus f is not differentiable when $z \neq 0$.
When $z=0$, then $x=y=0$ and so $u_{x}=v_{y}, u_{y}=-v_{x}$.
Moreover, $u_{x}, u_{y}, v_{x}, v_{y}$ exist near $(0,0)$ and are continuous at $(0,0)$.
Thus $f^{\prime}(0)$ exists and $f^{\prime}(0)=u_{x}(0,0)+i v_{x}(0,0)=0$.
4.) (a) Use poler coordinates to show $f(z)=\frac{1}{z^{4}}(z \neq 0)$ is differentiable and find $f^{\prime}(z)$.

$$
f(z)=\frac{1}{z^{4}}=\frac{1}{r^{4}} e^{-i 4 \theta}=\frac{1}{r^{4}} \cos (4 \theta)-\frac{1}{r^{4}} \sin (4 \theta)
$$

Let $u(r, \theta)=\frac{1}{r^{4}} \cos (4 \theta), v(r, \theta)=-\frac{1}{r^{4}} \sin (4 \theta)$
Then:

$$
u_{r}=-\frac{4 \cos (4 \theta)}{r^{5}}, u_{\theta}=\frac{-4 \sin (4 \theta)}{r^{4}}, v_{r}=\frac{4 \sin (4 \theta)}{r^{5}}, v_{\theta}=\frac{-4 \cos (4 \theta)}{r^{4}}
$$

These exist and are continuous everywhere except $z=0$. Moreover, $r u_{r}=v_{\theta}$ and $u_{\theta}=-r v_{r}$
Thus $f^{\prime}(z)$ exists for all $z \neq 0$ and

$$
\begin{aligned}
f^{\prime}(z) & =e^{-i \theta}\left(u_{r}+i v_{r}\right)=e^{-i \theta}\left(\frac{-4 \cos (4 \theta)}{r^{5}}+i\left(\frac{4 \sin (4 \theta)}{r^{5}}\right)\right) \\
& =\frac{-4 e^{-i \theta}}{r^{5}}(\cos 4 \theta-i \sin 4 \theta)=\frac{-4 e^{-i \theta}}{r^{5}} e^{-i 4 \theta}=\frac{-4 e^{-i 5 \theta}}{r^{5}} \\
& =\frac{-4}{\left(r e^{i \theta}\right)^{5}}=\frac{-4}{z^{5}}
\end{aligned}
$$

$P 76$
1.) (a) Show that $f(z)=3 x+y+i(3 y-x)$ is entire

Let $u(x, y)=3 x+y, v(x, y)=3 y-x$
Then $u_{x}=3, u_{y}=1, v_{x}=-1, v_{y}=3$
Since $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ at all points
and $u_{x}, v_{x}, u_{y}, v_{y}$ exist and are continuous everywhere, f is differentiable everywhere

Thus f is entire.
2.) (a) Show that $f(z)=x y+i y$ is nowhere analytic

Let $u(x, y)=x y$ and $v(x, y)=9$,
then $u_{x}=y, \quad u_{y}=x, \quad v_{x}=0, \quad v_{y}=1$
If $(x, y) \neq(0,1)$, then the Camchy-Rienann
equations are not satisfied. Thus $f^{\prime}(z)$ does not exist when $z \neq i$. Thus f is not analytic when $z \neq i$

Since $u_{x}, u_{y}, v_{x}, v_{y}$ exist near $(0,1)$ and are continuous at $(0,1), f^{\prime}(i)$ exists.
However, f is not analytic at i since f is rot differentiable at all points near i
7.) Let f be analytic everywhere in a domain D. Prove that if $f(z) \in \mathbb{R}$ for all $z \in D$, then $f(z)$ is constant throughout D.

Since $f(z) \in \mathbb{R}, f(z)=u(x, y)+i v(x, y)$, where $v(x, y)=0$. Since $f^{\prime}(z)$ exists everywhere, the Canchy-Riemann equations are satisfied: $u_{x}=v_{y}=0, \quad u_{y}=-v_{x}=0$. and $f^{\prime}(z)=u_{x}+i v_{x}=0$ everywhere on D.
Thus f is constant on D.
0.95
4.) Show that $\log \left(i^{2}\right) \neq 2 \log (i)$ on the branch $\log z=\ln r+i \theta$

$$
\begin{aligned}
\log \left(i^{2}\right) & =\log (-1)=\ln 1+i(3 \pi)=3 \pi i \\
2 \log (i) & =2\left(\ln 1+i \frac{5 \pi}{2}\right)=5 \pi i
\end{aligned}
$$

thus $\log (i)=3 \pi i \neq 5 \pi i=2 \log (i)$ on this branch
P.107:
1.) Show that $\frac{d}{d z}(\sin z)=\cos z$ and $\frac{d}{d z}(\cos z)=-\sin z$

$$
\begin{aligned}
& \frac{d}{d z}(\sin z)=\frac{d}{d z}\left(\frac{e^{i z}-e^{-i z}}{2 i}\right)=\frac{i e^{i z}+i e^{-i z}}{2 i}=\frac{e^{i z}+e^{-i z}}{2}=\cos z \\
& \frac{d}{d z}(\cos z)=\frac{d}{d z}\left(\frac{e^{i z}+e^{-i z}}{2}\right)=\frac{i e^{i z}-i e^{-i z}}{2}=-\frac{e^{i z}-e^{-i z}}{2 i}=-\sin z
\end{aligned}
$$

Addition Problems
1.) (a)

Let l_{1} be the line from O to z and l_{2} the line from 1 to z. By basic geometry, the lines are parallel, have the same length, r_{1} and intersect the real axis at the same angle, θ

In the other quadrants, we have simile pichres

(b) As z approaches B from above the real axis, $\theta \rightarrow \pi$

As z approaches B from below the red axis, $\theta \rightarrow-\pi$

(c) Since $F(z)=\ln |z-1|+i \theta \rightarrow \ln |z-1|+i \pi$ as $z \rightarrow B$ from above and $F(z) \rightarrow \ln |z-1|$-it as $z \rightarrow B$ from below, F is not continuous on B.
(d) $F(z)=\ln r+i \theta$, where $-\pi<\theta<\pi, r>0$.

Let $u(r, \theta)=\ln r, v(r, \theta)=\theta$.
Then $u_{r}=\frac{1}{r}, u_{\theta}=0, v_{r}=0, v_{\theta}=1$
Thus

$$
r u_{r}=1=v_{0} \text { and } u_{0}=0=-r v_{r}
$$

Moreover, since $u_{r}, u_{0}, v_{r}, v_{0}$ exist ardare continuous everywhere on U, F is differentiable everywhere on U.
Thus F is analytic on U.
(e) Since F is analytic on U, F is a branch of F. Since B is a curve in \mathbb{C} and F is a branch on $C-B, B$ is a branch cut, by definition.
Since f is undefined at $z=1$, $z=1$ is in every branch cut of f.
Thus $z=1$ is a branch point.
(f) An attempt:

2.) (a)

(b) As $z \rightarrow B$ from above, $\theta_{1} \rightarrow 0$ and $\theta_{2} \rightarrow \pi \Rightarrow \theta_{1}-\theta_{2} \rightarrow \pi$

As $z \rightarrow B$ from below, $\theta_{1} \rightarrow 0$ and $\theta_{2} \rightarrow-\pi \Rightarrow \theta_{1}-\theta_{2} \rightarrow-\pi$
As $z \rightarrow B^{\prime}$ from above or below, $\theta_{1} \rightarrow 0$ and $\theta_{2} \rightarrow 0 \Rightarrow \theta_{1}-\theta_{2} \rightarrow 0$
As $z \rightarrow B^{\prime \prime}$ from above or below, $\theta_{1} \rightarrow \pi$ and $\theta_{2} \rightarrow \pi \Rightarrow \theta_{1}-\theta_{2} \rightarrow 0$
(c) Since $G(z) \rightarrow \ln |z-1|+i \pi$ as $z \rightarrow B$ from above and $G(z) \rightarrow \ln |z-1|-i \pi$ as $z \rightarrow B$ from below, G is not continuous on B.
(e) No way.

