Homework 6 Solutions
0.159
1.) Apply Couchy-Goursat to show $\int_{c} f(z) d z=0$ when C is the unit circle and
(a) $f(z)=\frac{z^{3}}{z+3}$
(b) $f(z)=z e^{-z}$
(c) $f(z)=\frac{1}{z^{2}+2 z+2}$
(a) $f(z)=\frac{z^{3}}{z+3}$ is analytic every where except $z=-3$.

Since C does not enclose or pass through $z=-3$,
f is analytic at all pouts on C and
 enclosed by C. Thus by Cancly-Goursat, $\int_{c} \frac{z^{3}}{z+3} d z=0$
(b) $f(z)=z e^{-z}$ is analytic on \mathbb{C}

Thus, f is analytic at all points or C and enclosed by C. Thus by Canchy-Gowrsat, $\int_{c} z e^{-z} d z=0$
(c) $f(z)=\frac{1}{z^{2}+2 z+2}$ is analytic every where except when $z^{2}+2 z+2=0$ $\Longrightarrow z=-1 \pm i$
Since C does not enclose or pass through $-1 \pm i$, f is analytic at all points on C ard enclosed by C.

Thus $\int_{c} \frac{1}{z^{2}+2 z+2} d z=0$.
2.) Let C_{1} and C_{2} be the square and circle depicted.
Explain why

$$
\int_{c_{1}} f(z) d z=\int_{c_{2}} f(z) d z
$$

when
(a) $f(z)=\frac{1}{3 z^{2}+1}$
(b) $f(z)=\frac{z+2}{\sin (z / 2)}$

(a) $f(z)=\frac{1}{3 z^{2}+1}$ is analytic at all points except when $3 z^{2}+1=0 \Rightarrow z= \pm \frac{\sqrt{3}}{3} i$
Since $\left| \pm \frac{\sqrt{3}}{3} i\right|<1, \pm \frac{\sqrt{3}}{3} i$ are not in the region between ${ }^{3} C_{1}$ and C_{2} (including $C_{1} \pm C_{2}$),
f is analytic on C_{1}, C_{2} and the region.
Thus $\int_{c_{1}} \frac{1}{3 z^{2}+1} d z=\int_{c_{2}} \frac{1}{3 z^{2}+1} d z$
(b) $f(z)=\frac{z+Z}{\sin \left(\frac{z}{2}\right)}$ is aralugtic everywhere except at $z=2 n \pi, \quad n \in \mathbb{Z}$
Since these points do not lie in the region between C_{1} and C_{2} or on C_{1} or C_{2}, f is analytic at all points on C_{1} and C_{2} art between C_{1} and C_{2}.
thus $\int_{c_{1}} \frac{z+2}{\sin \left(\frac{z}{z}\right)} d z=\int_{c_{2}} \frac{z+2}{\sin \left(\frac{z}{z}\right)} d z$
7.) Show that if C is a positively oriented simple closed contour, then the area of the region enclosed by C is $\frac{1}{2 i} \int_{c} \bar{z} d z$

Let R be the region enclosed by C. First, we con write $f(z)=\bar{z}=x-i y$. So $u(x, y)=x, v(x, y)=-y$. By formula (4) on page 149,

$$
\begin{aligned}
\int_{c} \bar{z} d z & =\iint_{R}\left(-v_{x}-u_{y}\right) d A+i \iint_{R}\left(u_{x}-v_{y}\right) d A \\
& =\iint_{R} O d A+i \iint_{R} 1-(-1) d A=i \iint_{R} z d A
\end{aligned}
$$

Thus $\frac{1}{2 i} \int_{c} \bar{z} d z=\frac{1}{2 i} i \iint_{R} 2 d A=\iint_{R} 1 d A=$ Area of R.
$p .170$
1.) Let C be the positively oriented boundary of the square depicted. Evaluate:

(a) $\int_{c} \frac{e^{-z}}{z-\frac{\pi i}{2}} d z$
(b) $\int_{c} \frac{\cos 2}{z\left(z^{2}+8\right)} d z$
(d) $\int_{c} \frac{z d z}{2 z+1}$
(d) $\int_{c} \frac{\cosh z}{z^{4}} d z$
(e) $\int_{c} \frac{\tan (z / 2)}{\left(z-x_{0}\right)^{2}} d z \quad\left(-2<x_{0}<2\right)$
(a) Let $f(z)=e^{-z}$. Then f is analytic everywhere.

Since $\frac{\pi}{2} i$ is enclosed by c, by the
Cauchy integral formula,

$$
\int_{c} \frac{e^{-z}-\frac{\pi i}{2}}{} d z=2 \pi i f\left(\frac{\pi}{2} i\right)=2 \pi i e^{-\frac{\pi i}{2} i}=2 \pi
$$

(b) Let $f(z)=\frac{\cos 2}{z^{2}+8}$. Then f is ardyt.e evenpuhare except $z= \pm \sqrt{8} i$. Since these points are not on or inkrior to C, and since $z=0$ is interior to C, by Canchy Integral formula,

$$
\int_{c} \frac{\cos z}{z\left(z^{2}+8\right)} d z=2 \pi i f(0)=2 \pi i\left(\frac{1}{8}\right)=\frac{\pi i}{4}
$$

(c) Let $f(z)=\frac{z}{2}$. Then f is analytic inside and on C Since $z=-1 / 2$ is enclosed by C, by the Cauchy Integral formula,

$$
\int_{c} \frac{z}{2\left(z+\frac{1}{2}\right)} d z=2 \pi i f(-1 / 2)=-\frac{\pi i}{2}
$$

(d) Let $f(z)=\cosh z$. Then f is analytic inside and on C Since $z=0$ is enclosed by C, by the Caneshy Integral derivative formula

$$
\int_{c} \frac{\cosh 2}{z^{4}} d z=\frac{2 \pi i}{3!} f^{(3)}(0)=\frac{\pi i}{3} \sinh (0)=0
$$

(e) Let $f(z)=\tan \left(\frac{z}{2}\right)$. Then f is analytic inside and on C Since $z=x_{0}$ is enclosed by C, by the Cauchy Integral derivative formula

$$
\int_{<} \frac{\tan \left(z_{2}\right)}{\left(z-x_{0}\right)^{2}} d z=\frac{2 \pi i}{1!} f^{\prime}\left(x_{0}\right)=2 \pi i\left(\frac{1}{2} \sec ^{2}\left(\frac{x_{2}}{2}\right)\right)=\pi i \sec ^{2}\left(\frac{x_{0}}{2}\right)
$$

2.) Let C be the circle $|z-i|=2$ oriented positively.

Evaluate
(a) $\int_{c} \frac{1}{z^{2}+4} d z$
(b) $\int_{c} \frac{1}{\left(z^{2}+4\right)^{2}} d z$
(a) Let $f(z)=\frac{1}{z+2 i}$. Then f is andytic everywhere except $z=-2 i$.
Since $-2 i$ is not enclosed by C or on C, F is analytic on C and in C.
thus

$$
\int_{c} \frac{1}{z^{4}+1} d z=\int_{c} \frac{1}{z+2 i} \frac{z-2 i}{z} d z=2 \pi i f(2 i)=\frac{\pi}{2}
$$

(b) Let $f(z)=\frac{1}{(z+2 i)^{2}}$. Then f is analytic on C and inside C since $-2 i$ is not inside or on C. Thus

$$
\begin{aligned}
\int_{c} \frac{1}{\left(z^{2}+4\right)^{2}} d z=\int_{c} \frac{\frac{1}{(z+2 i)^{2}}}{(z-2 i)^{2}} d z & =2 r i f^{\prime}(2 i)=2 \pi i\left(\frac{-2}{(2 i+2 i)^{3}}\right) \\
& =2 \pi i\left(\frac{-2}{-64 i}\right)=\frac{\pi}{16}
\end{aligned}
$$

3) Let C be the circle $|z|=3$ oriented
positively. Let $g(z)=\int_{c} \frac{2 s^{2}-5-2}{5-z} d z \quad(|z| \neq 3)$
Show that $g(2)=8 \pi i$. What is $g(z)$ when $|z|>3$?
Let $f(s)=2 s^{2}-s-2$. Since f is analytic on \mathbb{C} and Z is enclosed by C, by the Cauchy integral formula,

$$
g(2)=\int_{c} \frac{2 s^{2}-s-2}{s-2} d s=2 \pi i f(2)=2 \pi i\left(2(2)^{2}-2-2\right)=8 \pi i
$$

If $|z|>3$, then the function $h(s)=\frac{2 s^{2}-s-2}{s-z}$ is andytic on and inside of $C .^{s-z}$
4.) Let C be any positicly oriented simple closed contour and let $g(z)=\int_{c} \frac{s^{3}+2 s}{(s-z)^{3}} d s$.
Show that $g(z)=\left\{\begin{array}{cl}G r i z & \text { if } z \text { is inside } C \\ 0 & \text { if } z \text { is outside of } C\end{array}\right.$
If z is inside C, let $f(s)=s^{3}+2 s$. Then f is analytic on \mathbb{C} and so by the Cauchy Integral Derivative formula,

$$
g(z)=\int_{c} \frac{s^{3}+2 s}{\left(s-z^{3}\right.} d s=\frac{2 \pi i f^{\prime \prime}}{2!}(z)=\pi i(6 z)=6 \pi i z
$$

If z is outside C_{1} then $\frac{s^{3}+2 s}{(s-z)^{3}}$ is analytic on C and inside C. Thus by the Cauchy-Goursat theorem, $g(z)=\int_{c} \frac{s^{3}+2 s}{(s-z)^{3}} d s=0$.
5.) Show that if f is analytic on and within a simple closed contra C and z_{0} is not on C, then $\int_{c} \frac{f^{\prime}(z)}{z-z_{0}} d z=\int_{c} \frac{f(z)}{\left.c(z)^{2}\right)} d z$
Since f is avalytic on and inside C, so is f^{\prime}.
By the Cauchy integral formula $\&$ derivative formula,

$$
\int_{C} \frac{f^{\prime}(z)}{z-z_{0}} d z=2 \pi i f^{\prime}\left(z_{0}\right) \text { and } f^{\prime}\left(z_{0}\right)=\frac{1!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

Thus $\int_{c} \frac{f^{\prime}(z)}{z-z_{0}} d z=\int_{c} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z$
P. 139
1.) Show $\left|\int_{c} \frac{z+4}{z^{3}-1} d z\right| \leq \frac{6 \pi}{7}$ where C is the arc of $|z|=2$ from 2 to $2 i$ in the $1^{\text {st }}$ quadrant.

Since z is on $C,|z|=2$.
Thus $|z+4| \leq|z|+|4|=2+4=6$
and $\left|z^{3}-1\right| \geq\left||z|^{3}-11\right| \mid=2^{3}-1=7$

$$
\Rightarrow \quad\left|\frac{z+4}{z^{3}-1}\right| \leq \frac{6}{7}
$$

Moreover, length $(c)=\frac{2 \pi(2)}{4}=\pi$
Thus $\left|\int_{c} \frac{z+4}{z^{3}-1} d z\right| \leqslant 6$ 6orgth $(c)=\frac{6 \pi}{7}$
2.) Let C be the line segment from i to l Show that $\left|\int_{c} \frac{d z}{z^{4}}\right| \leq 4 \sqrt{2}$

Since z is on $C,|z|$ is minimized at the midpoint of C,
 namely $\frac{1}{2}+\frac{1}{2} i$. Thus on $C_{1}|z| \geqslant \frac{1}{\sqrt{2}}$
Thus $\left|\frac{1}{z^{4}}\right|=\frac{1}{|z|^{4}} \leq 4$.
Now the length of C is $|i-1|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
Thus $\left|\int_{c} \frac{d z}{z^{4}}\right| \leqslant 4 \sqrt{2}$
4.) Let C_{R} be the upper half of $|z|=R \quad(R>2)$ Show

$$
\left|\int_{C_{R}} \frac{2 z^{2}-1}{z^{4}+5 z^{2}+4} d z\right| \leq \frac{\pi R\left(2 R^{2}+1\right)}{\left(R^{2}-1\right)\left(R^{2}-4\right)}
$$

Then show $\int_{C_{R}} \frac{2 z^{2}-1}{z^{4}+5 z^{2}+4} \rightarrow 0$ as $R \rightarrow \infty$
Since z is on $C,|z|=R$

$$
\text { Thus } \begin{aligned}
\left|2 z^{2}-1\right| & \leq 2|z|^{2}+|-1|=2 R^{2}+1 \\
\left|z^{4}+5 z^{2}+4\right| & =\left|\left(z^{2}+1\right)\left(z^{2}+4\right)\right|=\left|z^{2}+1\right|\left|z^{2}+4\right| \\
& \geq\left(\left||z|^{2}-1\right|\right)\left(| | z^{2} \mid-4\right)=\left(R^{2}-1\right)\left(R^{2}-4\right) \\
\Rightarrow\left|\frac{2 z^{2}-1}{z^{4}+5 z^{2}+4}\right| & \leq \frac{2 R^{2}+1}{\left(R^{2}-1\right)\left(R^{2}-4\right)}
\end{aligned}
$$

Now, length of C is πR
Thus $\left|\int_{C_{R}} \frac{2 z^{2}-1}{z^{4}+5 z^{2}+4} d z\right| \leq \frac{\pi R\left(2 R^{2}+1\right)}{\left(R^{2}-1\right)\left(R^{2}-4\right)}$
Now $\lim _{R \rightarrow \infty} \frac{\pi R\left(2 R^{2}+1\right)}{\left(R^{2}-1\right)\left(R^{2}-4\right)}=0$

$$
\begin{aligned}
& \Rightarrow \lim _{R \rightarrow \infty}\left|\int_{C_{k}} \frac{2 z^{2}-1}{z^{2}+z^{2}+4} d z\right|=0 \\
& \Rightarrow \lim _{R \rightarrow \infty} \int_{c_{k}} \frac{2 z^{2}-1}{z^{4}+5 z^{2}+4} d z=0
\end{aligned}
$$

