Homework 7 Solutions
p. 171
10.) Let f be entire such that $|f(z)| \leq A|z|$ for all z, where A is a positive real number.
Show that $f(z)=a, z$, where $a_{1} \in \mathbb{C}$.
Let $z_{0} \in \mathbb{C}$ and let C_{R} be a circle of radius R centered at z_{0}.
Since $R=\left|z-z_{0}\right| \geq|z|-\left|z_{0}\right|$, we have $|z| \leq R+\left|z_{0}\right|$ Thus $|f(z)| \leq A|z| \leq A\left(\left|z_{0}\right|+R\right)$ for all z on C_{R}. Now by Cauchy's Inequality, $\left|f^{\prime \prime}(z)\right| \leq \frac{2 A\left(\left|z_{0}\right|+R\right)}{R^{2}}$
As R gets very large, $\frac{2 A\left|z_{0}\right|+R}{R^{2}}$ gets very small.
Thus $\left|f^{\prime \prime}\left(z_{0}\right)\right| \leq \lim _{R \rightarrow \infty} \frac{2 A\left(\left|z_{0}\right|+R\right)}{R^{2}}=0$

$$
\begin{array}{ll}
\Rightarrow & \left|f^{\prime \prime}\left(z_{0}\right)\right|=0 \\
\Rightarrow f^{\prime \prime}\left(z_{0}\right)=0 & \text { for all } z_{0} \in \mathbb{C} \\
z_{0} \in \mathbb{C} .
\end{array}
$$

Since $f^{\prime \prime}(z)=0 \forall z \in \mathbb{C}, f^{\prime}(z)$ is a constant function, call it $f^{\prime}(z)=a_{1}$.
Anyantiderivative of $f^{\prime}(z)=a_{1}$ is of the form $F(z)=a, z+b$, where $b \in \mathbb{C}$.
Now, $|F(z)|=|a, z+b|$.
If $|a, z+b| \leq A|z|$ feral z, then when $z=0,|b| \leq 0$
thus $b=0 \Rightarrow f$ is of the form $f(z)=a, z$.
p. 177
1.) Let f be entire and let $u(x, y)=\operatorname{Re}\left(f(z) \leq u_{0}\right.$ for all $(x-y)$ in \mathbb{R}^{2}. Shes that u is constant on \mathbb{R}^{2}.
Let $g(z)=e^{f(z)}=e^{u(x, y)} e^{i v(x, y)}$, where $f(z)=u(x, y)+i v(x, y)$ then $|g(z)|=e^{u(x, y)} \leq e^{u_{0}}$, for all (x, y) on \mathbb{R}^{2}.
By Liouvile's Theorem, since g is entire on \mathbb{C} and $g(z)$ is bounded on C, g is constant on \mathbb{C}. $\operatorname{let}^{u(x, y)} g(z)=e^{u(x, y)} e^{i(x, y)}=c$, where $c \in \mathbb{C}$ is constant. Then $e^{u(k, y)}=|c| \Rightarrow u(x, y)=\ln |c|$, which is constant on \mathbb{R}^{2}.
2.) Let $f k$ continues on a closed, bounded region R and let it be analytic and ronconstant on the interior of R. If $f(z) \neq 0$ on R, prove that $|f(z)|$ has a minimum value m in \mathbb{R} occurring on the bounder of R and not on the interior.

Let $g(z)=\frac{1}{f(z)}$. Since g is nonconstant and analytic on R, by the Maximum Modulus Principle, $\lg (z)$ has no maximum in the interior of R.
interior of $|f(z)|=\frac{1}{|g(z)|}$ has no minimum in the
interior of R.
8.) Let $P(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}\left(a_{n} \neq 0\right)$ and let $P\left(z_{0}\right)=0$ We will show $P(z)=\left(z-z_{0}\right) Q(z)$, where Q is a polynomial of degree $n-1$
a) Verify that $z^{k}-z_{0}^{k}=\left(z-z_{0}\right)\left(z^{k-1}+z^{k-2} z_{0}+\cdots+z z_{0}^{k-2}+z_{0}^{k-1}\right)$ for all $k \geqslant 2$

$$
\begin{aligned}
& \left(z-z_{0}\left(z^{k-1}+z^{k-2} z_{0}+\cdots+z z_{0}^{k-2}+z_{0}^{k-1}\right)\right. \\
& =z^{k}+z^{k-1} z_{0}+z^{k-2} z_{0}^{2}+\cdots+z z_{0}^{k-1}+z z_{0}^{k-1} \\
& \\
& -z \cdot z^{k-1}-z^{k-2} z_{0}^{2}-\cdots-z z_{0}^{k-1}-z_{0}^{k} \\
& =z^{k}-z_{0}^{k}
\end{aligned}
$$

b) Show that $P(z)-P\left(z_{0}\right)=\left(z-z_{0}\right) Q(z)$ where $Q(z)$ has degree $n-1$ and deduce the result.

$$
\begin{aligned}
& P(z)-P\left(z_{0}\right)= a_{0}+a_{1} z+\cdots+a_{n} z^{n}-\left(a_{0}+a_{1} z_{0}+\cdots+a_{n} z_{0}^{n}\right) \\
&=a_{1}\left(z-z_{0}\right)+a_{2}\left(z^{2}-z_{0}^{2}\right)+\cdots+a_{n}\left(z^{n}-z_{0}^{n}\right) \\
&=a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)\left(z+z_{0}\right)+a_{3}\left(z-z_{0}\right)\left(z^{2}+z z_{0}+z_{0}^{2}\right) \\
&=\left(z-z_{0}\right)\left[a_{1}+a_{n}\left(z-z_{0}\left(z+z_{0}\right)\left(z^{n-1}+a_{3}\left(z^{2}+2 z_{0}+z_{0}^{2}\right)+\cdots+\cdots+\cdots z_{0}^{n-2}+z_{0}^{n-1}\right)\right.\right. \\
&\left.\quad a_{n}\left(z^{n-1}+z^{n-2} z_{0}+\cdots+z z_{0}^{n-2}+z_{0}^{n-1}\right)\right]
\end{aligned}
$$

Let $Q(z)=a_{1}+a_{2}\left(z+z_{0}\right)+\cdots\left(\cdots z_{z_{0}}+z_{0}^{2}\right)+\cdots+$ $a_{n}\left(c+z^{2} z_{0}+\cdots+z z_{0}^{n-2}+z_{0}^{n-1}\right)$
Then since $a_{n} \neq 0, Q$ is a polynomial of degree $n-1$ and $P(z)-P\left(z_{0}\right)^{\prime}=\left(z-z_{0}\right) Q(z)$

$$
\Rightarrow P(z)=\left(z-z_{0}\right) Q(z) \text {, since } P\left(z_{0}\right)=0 \text {. }
$$

P. 357
1.) Ka l Let $u(x, y)=2 x-x^{3}+3 x y^{2}$. Show u is harmonic in some domain D and find a hormanic conjugate of u in D.

$$
\begin{array}{ll}
u_{x}=2-3 x^{2}+3 y^{2} & u_{y}=6 x y \\
u_{x x}=-6 x & u_{y y}=6 x
\end{array}
$$

Thus $u_{x x}+u_{y y}=0$ on \mathbb{C} and so u is harmonic on \mathbb{C}.

Let $v(x, y)$ be a harmonic conjugate of u on C. then $f(z)=u(x, y)+i v(x, y)$ is analytic and so $v_{x}=-u_{y}=-6 x y$ and $v_{y}=u_{x}=2-3 x^{2}+3 y^{2}$
Thus $v(x, y)=\int-6 x y d x=-3 x^{2} y+C_{1}(y)$
and

$$
V(x, y)=\int 2-3 x^{2}+3 y^{2} d y=2 y-3 x^{2} y+y^{3}+C_{2}(x)
$$

$\Rightarrow C_{1}(y)=2 y+y^{3}+C$ for some constant C

$$
\Rightarrow V(x, y)=2 y+y^{3}-3 x^{2} y+C
$$

Thus, in particular, $v(x, y)=2 y+y^{3}-3 x^{2} y$ is a harmonic congingate of u.
3.) Suppose v is a harmonic conjugate of u on a domain D. If u is also a harmonic conjugate of v on D, show that u and v are constant on D.

By definition, the functions $f_{1}(z)=u(x, y)+i v(x, y)$ and $f_{2}(z)=v(x, y)+i u(x, y)$ are analytic on D.
Thus the Canchy-Riemann equations satisfied for both functions: $u_{x}=v_{y}$ and $v_{x}=u_{y}$

$$
v_{x}=-u_{y} \quad v_{y}=-u_{x}
$$

Thus $u_{x}=v_{y}=-u_{x} \Rightarrow 2 u_{x}=0 \Rightarrow u_{x}=0$

$$
v_{x}=-u_{y}=-v_{x} \Rightarrow 2 v_{x}=0 \Rightarrow v_{x}=0
$$

and so $f^{\prime}(z)=u_{x}+i v_{x}=0$ on D.
Thus f is constant on D.
Additional Problems
1.) a) $n(c ; 0)=2 \quad n(c ; 1)=0 \quad n(c ; i)=-1$
b) Let $f(z)=\cos (i \pi z)$. Then f is analytic on \mathbb{C}. By the general Cauchy integral Formula,

$$
\int_{c}^{0} \frac{\cos (i \pi z)}{z-z_{0}} d z=n\left(c i z_{0}\right) 2 \pi i f\left(z_{0}\right)
$$

If $z_{0}=0$, we have $\int_{c} \frac{\cos (i \pi z)}{z-z_{0}} d z=2(2 \pi i \cos (0))=4 \pi i$
If $z_{0}=1$, we have $\int_{c} \frac{\cos (i \pi z)}{z-z_{0}} d z=O(2$ ri) $(\cos (i \pi x))=0$
If $z_{0}=i$, we have $\int_{c} \frac{\cos (i \pi z)}{z-z_{0}} d z=-1(2 \pi i)(\cos (-\pi \pi))=2 \pi i$
2.) By the Cauchy Inequality, since f is analytic on and inside C, which is centered at $1+i$

$$
\left|f^{\prime \prime \prime}(1+i)\right| \leqslant \frac{3!(7)}{3^{3}}=\frac{14}{9}
$$

3) Let z_{0} be a point enclosed by C_{R} Then by the Cauchy Integral Formula,

$$
\begin{aligned}
f\left(z_{0}\right) & =\frac{1}{2 \pi i} \int_{c_{R}} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi i} \int_{c_{R}} \frac{c}{z-z_{0}} d z \\
& =\frac{c}{2 \pi i} \int_{c_{R}} \frac{1}{z-z_{0}} d z
\end{aligned}
$$

By another application of the Cauchy Integral formula, $\int_{c_{R}} \frac{1}{z-z_{0}} d z=2 \pi i(1)=2 \pi i$

Thus $f\left(z_{0}\right)=\frac{c}{2 \pi i}(2 \pi i)=c$
$\Longrightarrow f(z)=c$ for all z in $|z| \leq R$.

