Homework a solutions
1.) $z_{n}=\left(\frac{2 \sqrt{2}}{3-3 i}\right)^{n}$
a)

$$
\begin{aligned}
& \frac{2 \sqrt{2}}{3-3 i}=\frac{2 \sqrt{2}}{3} \frac{1}{1-i} \cdot \frac{1+i}{1+i}=\frac{\sqrt{2}}{3}+\frac{\sqrt{2}}{3} i=\frac{2}{3} e^{i \frac{\pi}{4}} \\
& z_{1}=\frac{2}{3} e^{i \frac{\pi}{4}} \\
& z_{2}=\frac{4}{9} e^{i \frac{\pi}{2}} \\
& z_{3}=\frac{8}{27} e^{i \frac{3 \pi}{4}} \\
& i
\end{aligned}
$$

b) By part (a), $z_{n}=\left(\frac{2}{3}\right)^{n} e^{i \frac{n \pi}{4}}$. Since $e^{i \frac{i m}{4}}$ is on the unit circle for all n and $\frac{2}{3}<1$,

$$
\lim _{n \rightarrow \infty} z_{n}=0
$$

thus the sequence converges to O.
2.) Let $z_{n}=x_{n}+i y_{n}$. Then $\left|z_{n}\right|=\sqrt{x_{n}^{2}+y_{n}^{2}}$

If $\lim _{n \rightarrow \infty} z_{n}=0$, then $0=\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} x_{n}+i \lim _{n \rightarrow \infty} y_{n}$

$$
\begin{aligned}
& \Rightarrow \lim _{n \rightarrow \infty} x_{n}=0 \text { and } \lim _{n \rightarrow \infty} y_{n}=0 \\
& \Rightarrow \lim _{n \rightarrow \infty}\left|z_{n}\right|=\lim _{n \rightarrow \infty} \sqrt{x_{n}+y_{n}}=\sqrt{\lim _{n \rightarrow \infty} x_{n}+\lim _{n \rightarrow-} y_{n}}=0
\end{aligned}
$$

sine the square root function is continuous
3.) Let S_{N} be the $N^{\text {th }}$ partial sum of $\sum_{n=1}^{\infty} z_{n}$.
then $\lim _{N \rightarrow \infty} S_{N}=S=\sum_{n=1}^{\infty} z_{n}$
Moreover, the $N^{\text {th }}$ partial sum of $\sum_{n=1}^{n} \bar{z}_{n}$ is

$$
\overline{z_{1}}+\bar{z}_{2}+\cdots+\bar{z}_{N}=\overline{z_{1}+\cdots+z_{N}}={ }^{n=1} \bar{\delta}_{N}
$$

Thus $\lim _{N \rightarrow \infty} \bar{S}_{N}=\bar{S}$ and so $\sum_{n=1}^{\infty} \bar{z}_{n}=\bar{S}$
4.) a) $\sum_{n=1}^{\infty} z^{n}$ converges when $|z|<\mid$ and diverges when $|z| \geq 1$

When $|z|<1, \quad \sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z}$
Thus $\sum_{n=1}^{\infty} z^{n}=\left(\sum_{n=0}^{\infty} z^{n}\right)-1=\frac{1}{1-z}-1=\frac{z}{1-z}$
b) Let $z=r e^{i \theta}, 0<r<1$. Since $\sum_{n=1}^{\infty} z^{n}$ is convergent,

$$
\begin{aligned}
\sum_{n=1}^{\infty} z^{n}=\sum_{n=1}^{\infty} r^{n} e^{i n \theta} & =\sum_{n=1}^{\infty}\left(r^{n} \cos (n \theta)+i r^{n} \sin (n \theta)\right) \\
& =\sum_{n=1}^{\infty} r^{n} \cos (n \theta)+i \sum_{n=1}^{\infty} r^{n} \cos (n \theta)
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& \sum_{n=1}^{\infty} r^{n} \cos (n \theta)+i \sum_{n=1}^{\infty} r^{n} \cos (n \theta)=\sum_{n=1}^{\infty} z^{n}=\frac{z}{1-z} \\
&=\frac{z}{1-z} \cdot \frac{\overline{1-z}}{1-z}=\frac{z}{1-z} \cdot \frac{1-\bar{z}}{1-\bar{z}}=\frac{z-|z|^{2}}{1-2(z+\bar{z})+|z|^{2}} \\
&=\frac{r \cos \theta+i r \sin \theta-r^{2}}{1-2 r \cos \theta+r^{2}}=\frac{r \cos \theta-r^{2}}{1-2 r \cos \theta+r^{2}}+i \frac{r \sin \theta}{1-2 r \cos \theta+r^{2}} \\
& \Longrightarrow \sum_{n=1}^{\infty} r^{n} \cos (n \theta)=\frac{r \cos \theta-r^{2}}{1-2 r \cos \theta+r^{2}}+\sum_{n=1}^{\infty} r^{n} \sin (n \theta)=\frac{r \sin \theta}{1-2 r \cos \theta+r^{2}}
\end{aligned}
$$

5.) (a) Notice, $\sum_{n=1}^{n}\left(\frac{3}{1-i}\right)^{n}$ is a geometric series.

Since $\left|\frac{3}{1-i}\right|=\frac{|3|}{|1-i|}=\frac{3}{\sqrt{2}}>1, \quad \sum_{n=1}^{\infty}\left(\frac{3}{1-i}\right)^{n}$ diverges
Alternatively, the divergence test can be used.
(b) $\sum_{n=1}^{\infty}\left|\frac{e^{\frac{\pi}{f} n}}{n^{2}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges by the Calc II p-seriestest Thus $\sum_{n=1}^{\infty} \frac{e^{\frac{\pi}{3} n i}}{n^{2}}$ is absolutely convergent and thus $\sum_{n=1}^{\infty} \frac{e^{\frac{\pi}{2} n i}}{n^{2}}$ is convergent.
(k) Weill use the Dirichlet test.

Let $a_{n}=\frac{1}{n}$ and $b_{n}=e^{\frac{\pi}{2} n i}$
then $a_{n+1}<a_{n}$ for all n and $\lim _{n \rightarrow \infty} a_{n}=0$.
Consider the $N^{\text {th }}$ partial sums of $\sum_{n=1}^{\infty} b_{n}$

$$
\begin{aligned}
& B_{1}=e^{\frac{\pi i}{2}}=i, \quad B_{2}=e^{\frac{\pi i}{2}}+e^{\pi i}=i-1, \quad B_{3}=e^{\frac{\pi i}{2}}+e^{\pi i}+e^{\frac{3 \pi i}{2} i}=i-1-i=-1 \\
& B_{4}=e^{\frac{\pi i}{2}}+e^{\pi i}+e^{\frac{3 \pi i}{2} i}+e^{2 \pi i}=i-1-i+1=0 \\
& B_{5}=i, \quad B_{6}=i-1, \quad B_{7}=-1, B_{8}=0, \ldots \ldots
\end{aligned}
$$

Thus B_{N} is either $i, i-1,-1$, or 0 for all N.

$$
\Rightarrow\left|B_{N}\right|=\left|\sum_{n=1}^{N} b_{n}\right| \leq|i-1|=\sqrt{2} \text { for all } N
$$

Thus by the Dirchlet Test, $\sum_{n=1}^{\infty} \frac{e^{\frac{\pi}{n} n}}{n}$ is convergent.
(d) Since $\lim _{n \rightarrow \infty} \frac{n^{2}-i n+1}{2-(3+i) n^{2}}=\frac{-1}{3+i} \neq 0$, $\sum_{n=1}^{\infty} \frac{i n^{2}-n+1}{2-(3+i) n^{2}}$ diverges by the Divergence Test.
6.) $\sum_{n=0}^{\infty} \frac{i}{2^{n}}(z+2 i)^{n}$
a) $\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{i}{2^{n}}(z+2 i)^{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{|z+2 i|^{n}}{2^{n}}}=\lim _{n \rightarrow \infty} \frac{|z+2 i|}{2}=\frac{\mid z+2 i)}{2}$

By the root test, the series converges if $\frac{|z+2 i|}{2}<1 \Rightarrow|z+2 i|<2$

Thus the radius of convergence is 2 and the disk of convergence is $|z+2 i|<2$

b) On the boundary of the disk of convergence, $|z+2 i|=2$.
Thus $\lim _{n \rightarrow \infty}\left|\frac{i(z+2 i)^{n}}{2^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|z+2 i|^{n}}{2^{n}}=\lim _{n \rightarrow \infty} 1=1 \neq 0$
Thus $\lim _{n \rightarrow \infty} \frac{i(z+2 i)^{n}}{2^{n}} \neq 0$, by problem 2 .
$\Rightarrow \sum_{n=0}^{\infty} \frac{i}{2^{n}}(z+2 i)^{n}$ diverges when z is on the boundary, by the divergence test.
7.) $\sum_{n=0}^{\infty} \frac{1}{(n+1) 3^{n}} z^{n}$
a) $\lim _{n \rightarrow \infty}\left|\frac{\frac{1}{(n+2)^{n+1}} z^{n+1}}{\frac{1}{\left(n+13^{n}\right.} z^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{3(n+2)}|z|=\frac{1}{3}|z|$

By the ratio test, the series converges if $\frac{1}{3}|z|<1$ $\Rightarrow|z|<3$
Thus the radices of con vergence is 3 ard the disk of convergence is $|z|<3$

b) Let z be on the boundary, so $|z|=3$ and suppose $z \neq 3$. Let $a_{n}=\frac{1}{n}$ and $b_{n}=\frac{z^{n}}{3^{n}}=\left(\frac{z}{3}\right)^{n}$
Then $a_{n+1}>a_{n}$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
The $N^{\text {th }}$ partial sum of $\sum_{n=1}^{\infty} b_{n}$ is

$$
\begin{aligned}
B_{N} & =1+\frac{z}{3}+\left(\frac{z}{3}\right)^{2}+\cdots+\left(\frac{z}{3}\right)^{N} \\
& =\left[1+\frac{z}{3}+\left(\frac{z}{3}\right)^{2}+\cdots+\left(\frac{z}{3}\right)^{N}\right]\left(\frac{1-\frac{z}{3}}{1-\frac{z}{3}}\right)=\frac{1-\left(\frac{z}{3}\right)^{N+1}}{1-\frac{z}{3}} \\
\Rightarrow\left|B_{N}\right| & =\left|\frac{1-\left(\frac{z}{3}\right)^{N+1}}{1-\frac{z}{3}}\right| \leq \frac{1+\left(\frac{1 z}{3}\right)^{N+1}}{\left|1-\frac{2}{3}\right|}=\frac{2}{\left|1-\frac{2}{3}\right|} \text { for all } N
\end{aligned}
$$

Thus, by the Dirichlet Test, the series converges.
If $z=3$, then $\sum_{n=0}^{\infty} \frac{1}{(n+1) 3^{n}} z^{n}=\sum_{n=0}^{\infty} \frac{1}{(n+1)}$, which diverges by the Calc II p-seres test.
8.) $\sum_{n=1}^{n} \frac{i}{n^{2}} z^{n}$
a) $\lim _{n \rightarrow \infty}\left|\frac{\frac{i}{(n+1)^{2}} z^{n+1}}{\frac{i}{n^{2}} z^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}|z|=|z|$

By the rato test, the serves converges if $|z|<1$ and diverges if $|z|>1$.
Thus the radius of convergence is 1 ard the disk of convergence is $|z|<1$

b) On $|z|=1, \sum_{n=1}^{\infty}\left|\frac{i}{n^{2}} z^{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ which converges by the p-series test.
$\Longrightarrow \sum_{n=1}^{\infty} \frac{i}{n^{2}} z^{n}$ is absolutely convergent ard thus convergent.

