Exam 1 Solutions

- 1. Let $z = 1 \sqrt{3}i$.
 - (a) Evaluate z^5 and express your answer in rectangular form.

Since |z| = 2 and $\operatorname{Arg} z = -\frac{\pi}{3}$, in exponential form, $z = 2e^{-i\frac{\pi}{3}}$. Thus $z^5 = 32e^{-i\frac{5\pi}{3}} = 32(\cos(-\frac{5\pi}{3}) + i\sin(-\frac{5\pi}{3})) = 16 + 16\sqrt{3}i$.

(b) Evaluate $\log z$ and express your answer in rectangular form.

 $\operatorname{Log}(1 - \sqrt{3}i) = \ln 2 - \frac{\pi}{3}i.$

(c) Find the 3^{rd} roots of z. Plot and label them in the complex plane.

The 3rd roots are $2^{\frac{1}{3}}e^{-i\frac{\pi}{9}}, 2^{\frac{1}{3}}e^{i\frac{5\pi}{9}}$, and $2^{\frac{1}{3}}e^{i\frac{11\pi}{9}}$.

- 2. The goal of this problem is to show that if $\sin z = 0$, then z is a real number of the form $z = n\pi$, where $n \in \mathbb{Z}$.
 - (a) Let $\sin z = 0$ and set $w = e^{iz}$. Use the definition of $\sin z$ to show that $w^2 = 1$.

$$0 = \sin z = \frac{e^{iz} - e^{-iz}}{2i} = \frac{w - w^{-1}}{2i} \Rightarrow w - \frac{1}{w} = 0 \Rightarrow w^2 = 1$$

(b) Use part (a) to show that $z = n\pi$, where $n \in \mathbb{Z}$.

Since $w^2 = 1$, we have that $(e^{iz})^2 = e^{2iz} = 1$. Thus $2z = 2n\pi$, where $n \in \mathbb{Z}$, and so $z = n\pi$, where $n \in \mathbb{Z}$.

3. Let z be a complex number such that e^z is on the imaginary axis. What are the possible values of the real and imaginary parts of z?

Let z = x + iy. Then $e^z = e^x e^{iy} = e^x \cos y + ie^x \sin y$. Since e^z is on the imaginary axis, $e^x \cos y = 0$ and so $\cos y = 0$. Thus $Imz = y = \frac{(2n+1)}{2}\pi$, where $n \in \mathbb{Z}$, and $Rez = x \in \mathbb{R}$.

4. (a) Show that $\lim_{z \to 0} \frac{|z|}{z}$ does not exist.

Let
$$z = x + iy$$
. Then $\frac{|z|}{z} = \frac{\sqrt{x^2 + y^2}}{x + iy}$.
As $z \to 0$ along the positive real axis, $\frac{|z|}{z} = \frac{|x|}{x} = 1 \to 1$.

As $z \to 0$ along the positive real axis, $\frac{|z|}{z} = \frac{|x|}{x} = 1 \to 1$. As $z \to 0$ along the negative real axis, $\frac{|z|}{z} = \frac{|x|}{x} = -1 \to -1$. Thus the limit does not exist.

(b) Use part (a) to show that f(z) = |z| is not differentiable at 0.

By definition, $f'(0) = \lim_{\Delta z \to 0} \frac{f(0 + \Delta z) - f(0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{|\Delta z|}{\Delta z}$. By part (a), we know that this limit does not exist. Thus f is not differentiable at the origin.

- 5. Determine whether the following statements are True or False. If true, no explanation is needed. If false, update the statement so that it is true.
 - (a) $\operatorname{Arg}(\frac{z_1}{z_2}) = \operatorname{Arg} z_1 \operatorname{Arg} z_2$ for all $z_1, z_2 \in \mathbb{C}$. False, $\operatorname{arg}(\frac{z_1}{z_2}) = \operatorname{arg} z_1 - \operatorname{arg} z_2$ for all $z_1, z_2 \in \mathbb{C}$
 - (b) The unit sphere can be identified with the complex plane \mathbb{C} .

False, the unit sphere can be identitfied with $\mathbb{C} \cup \{\infty\}$

(c) Logz is continuous on its domain.

False, Log z is not continuous at points on the negative real axis.

(d) The image of the imaginary axis under the function e^z is the unit circle.

True