Exam 2 Solutions

1. Let $f(z)=(\bar{z})^{2}$.
(a) Express f in the form $f(z)=u(x, y)+i v(x, y)$.

Solution: $f(z)=(\bar{z})^{2}=(x-i y)^{2}=\left(x^{2}-y^{2}\right)-2 x y i$.
(b) Determine where $f^{\prime}(z)$ exists and find its value. Explain your reasoning.

Solution: Since $u_{x}=2 x, u_{y}=-2 y, v_{x}=-2 y$, and $v_{y}=-2 x$, the CauchyRiemann equations are satisfied if and only if $2 x=-2 x$ and $2 y=-2 y$, or $x=0$ and $y=0$. Thus if $z \neq 0, f^{\prime}(z)$ does not exist. Since the Cauchy-Riemann equations are satisfied at $z=0$ and since the partial derivatives of u and v exist in an ϵ-neighborhood of $z=0$ and are continuous at $z=0, f^{\prime}(0)$ exists. Moreover, $f^{\prime}(0)=u_{x}(0,0)+i v_{x}(0,0)=0$.
(c) Determine where f is analytic. Explain your reasoning.

Solution: Since $f^{\prime}(z)$ does not exist when $z \neq 0, f$ is not analytic at all points $z \neq 0 . \quad f$ is also not analytic at $z=0$, since $f^{\prime}(z)$ does not exist in every ϵ neighborhood of $z=0$. So, f is not analytic anywhere.
2. Let C_{1} be the straight line from -1 to 1 and let C_{2} be the upper half of the unit circle from 1 to -1 . Let $C=C_{1} \cup C_{2}$.
(a) Sketch C_{1} and C_{2} in the complex plane.

(b) Parametrize C_{1} and C_{2}. Be sure to give bounds on your parameters.

Solution: We can parametrize C_{1} by $z_{1}(t)=t,-1 \leq t \leq 1$ and C_{2} by $z_{2}(t)=e^{i t}$, $0 \leq t \leq \pi$.
(c) Compute $\int_{C} f(z) d z$, where $f(z)=\bar{z}$.

Solution:

$$
\begin{aligned}
& \int_{C_{1}} \bar{z} d z=\int_{-1}^{1} t d t=0 \\
& \int_{C_{2}} \bar{z} d z=\int_{0}^{\pi} e^{-i t} i e^{i t} d t=\int_{0}^{\pi} i d t=i \pi \\
& \text { Thus } \int_{C} f(z) d z=0+i \pi=i \pi
\end{aligned}
$$

3. Let C be an arbitrary curve from $z=i \sqrt{\pi}$ to $z=0$ and let $f(z)=z \sin \left(z^{2}\right)$.

Compute $\int_{C} f(z) d z$.
Solution: Since $f(z)$ has antiderivative $F(z)=-\frac{1}{2} \cos \left(z^{2}\right)$ on all of \mathbb{C}, by the fundamental theorem of contour integrals,

$$
\int_{C} z \sin \left(z^{2}\right) d z=-\left.\frac{1}{2} \cos \left(z^{2}\right)\right|_{i \sqrt{\pi}} ^{0}=-1
$$

4. Suppose f is entire and $\overline{f(z)}=f(z)$ for all $z \in \mathbb{C}$. Show that f is constant on \mathbb{C}.

Solution: Let $f(z)=u(x, y)+i v(x, y)$. Then since $\overline{f(z)}=f(z)$, we have that $u(x, y)-i v(x, y)=u(x, y)+i v(x, y)$ and so $v(x, y)=0$. Since f is entire, the CauchyRiemann equations are satisfied at all points. Thus $u_{x}=v_{y}=0$ and $u_{y}=-v_{x}=0$ at all points. Therefore, $f^{\prime}(z)=u_{x}+i v_{x}=0$ for all $z \in \mathbb{C}$. Thus f is constant on \mathbb{C}.
5. Fill in the blanks.

If $f^{\prime}\left(z_{0}\right)$ exists, then $u_{\theta}=\underline{-r v_{r}}$ and $v_{\theta}=r u_{r}$ at z_{0}.
6. Determine whether the following statements are True or False. If true, no explanation is needed. If false, update the statement in a nontrivial way so that it is true.
(a) $f(z)=\log z\left(r>0,-\frac{3 \pi}{4}<\theta \leq \frac{5 \pi}{4}\right)$ is a branch of $\log z$.

Solution: False. $\log z$ is not analytic (or even continuous) on the region described and so f is not a branch.
(b) If f is continuous on \mathbb{C}, then $\int_{-C} f(z) d z=\int_{C} f(z) d z$.

Solution: False. $\int_{-C} f(z) d z=-\int_{C} f(z) d z$
(c) If $f^{\prime}\left(z_{0}\right)$ exists, then $u_{\theta}=-r v_{r}$ and $v_{\theta}=r u_{r}$ at z_{0}.

True. These are the Cauchy-Riemann equations.

