Exam 2 Solutions

- 1. Let $f(z) = (\overline{z})^2$.
 - (a) Express f in the form f(z) = u(x, y) + iv(x, y).

Solution: $f(z) = (\overline{z})^2 = (x - iy)^2 = (x^2 - y^2) - 2xyi$.

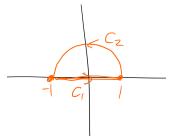
(b) Determine where f'(z) exists and find its value. Explain your reasoning.

Solution: Since $u_x = 2x$, $u_y = -2y$, $v_x = -2y$, and $v_y = -2x$, the Cauchy-Riemann equations are satisfied if and only if 2x = -2x and 2y = -2y, or x = 0 and y = 0. Thus if $z \neq 0$, f'(z) does not exist. Since the Cauchy-Riemann equations are satisfied at z = 0 and since the partial derivatives of u and v exist in an ϵ -neighborhood of z = 0 and are continuous at z = 0, f'(0) exists. Moreover, $f'(0) = u_x(0,0) + iv_x(0,0) = 0$.

(c) Determine where f is analytic. Explain your reasoning.

Solution: Since f'(z) does not exist when $z \neq 0$, f is not analytic at all points $z \neq 0$. f is also not analytic at z = 0, since f'(z) does not exist in every ϵ -neighborhood of z = 0. So, f is not analytic anywhere.

- 2. Let C_1 be the straight line from -1 to 1 and let C_2 be the upper half of the unit circle from 1 to -1. Let $C = C_1 \cup C_2$.
 - (a) Sketch C_1 and C_2 in the complex plane.



(b) Parametrize C_1 and C_2 . Be sure to give bounds on your parameters.

Solution: We can parametrize C_1 by $z_1(t) = t$, $-1 \le t \le 1$ and C_2 by $z_2(t) = e^{it}$, $0 \le t \le \pi$.

(c) Compute $\int_C f(z) dz$, where $f(z) = \overline{z}$.

Solution:

$$\int_{C_1} \overline{z} \, dz = \int_{-1}^1 t \, dt = 0$$
$$\int_{C_2} \overline{z} \, dz = \int_0^\pi e^{-it} i e^{it} \, dt = \int_0^\pi i \, dt = i\pi$$
$$\text{Thus } \int_C f(z) \, dz = 0 + i\pi = i\pi$$

3. Let C be an arbitrary curve from $z = i\sqrt{\pi}$ to z = 0 and let $f(z) = z\sin(z^2)$. Compute $\int_C f(z) dz$.

Solution: Since f(z) has antiderivative $F(z) = -\frac{1}{2}\cos(z^2)$ on all of \mathbb{C} , by the fundamental theorem of contour integrals,

$$\int_C z \sin(z^2) \, dz = -\frac{1}{2} \cos(z^2) \Big|_{i\sqrt{\pi}}^0 = -1$$

4. Suppose f is entire and $\overline{f(z)} = f(z)$ for all $z \in \mathbb{C}$. Show that f is constant on \mathbb{C} .

Solution: Let f(z) = u(x, y) + iv(x, y). Then since $\overline{f(z)} = f(z)$, we have that u(x, y) - iv(x, y) = u(x, y) + iv(x, y) and so v(x, y) = 0. Since f is entire, the Cauchy-Riemann equations are satisfied at all points. Thus $u_x = v_y = 0$ and $u_y = -v_x = 0$ at all points. Therefore, $f'(z) = u_x + iv_x = 0$ for all $z \in \mathbb{C}$. Thus f is constant on \mathbb{C} .

- 5. Fill in the blanks. If $f'(z_0)$ exists, then $u_{\theta} = \underline{-rv_r}$ and $v_{\theta} = \underline{-ru_r}$ at z_0 .
- 6. Determine whether the following statements are True or False. If true, no explanation is needed. If false, update the statement in a **nontrivial** way so that it is true.
 - (a) $f(z) = \log z \ (r > 0, -\frac{3\pi}{4} < \theta \le \frac{5\pi}{4})$ is a branch of $\log z$.

Solution: False. $\log z$ is not analytic (or even continuous) on the region described and so f is not a branch.

- (b) If f is continuous on \mathbb{C} , then $\int_{-C} f(z) dz = \int_{C} f(z) dz$. Solution: False. $\int_{-C} f(z) dz = -\int_{C} f(z) dz$
- (c) If $f'(z_0)$ exists, then $u_{\theta} = -rv_r$ and $v_{\theta} = ru_r$ at z_0 .

True. These are the Cauchy-Riemann equations.