
Math 421 Final Solutions

1. Determine all singular points of the following functions (except ∞).
Classify the isolated singular points and calculate the residue at each one (except ∞).

(a) f(z) =
(z6 − 1)e

1
z

z4

Solution: f has an isolated singularity at z = 0. It’s Laurent series at z = 0 is

(z6 − 1)e
1
z

z4
=
(
z2 − 1

z4

) ∞∑
n=0

(1/z)n

n!
=
∞∑
n=0

1

n!zn−2
−
∞∑
n=0

1

n!zn+4

There is one term with an exponent of −1, namely the fourth term in the first

series, which is
1

6z
. Thus Res

z=0
f(z) =

1

6
.

(b) f(z) =
Logz

z − 1

Solution: f has an isolated singularity at z = 1 and nonisolated singularities at all
points on the nonpositive real axis. Since Log(1) = 0, we cannot apply the theorem
involving poles to deduce that 1 is a pole and to calculate the residue. Instead, we
must consider the Laurent series of this function centered at z = 1.

Since Logz is analytic at 1, it has a Taylor series Logz =
∞∑
n=0

an(z − 1)n in a disk

centered at z = 1. Thus f has a Laurent series centered at z = 1 of the form

Logz

z − 1
=
∞∑
n=0

an(z − 1)n−1 =
a0

z − 1
+ a1 + a2(z − 1) + · · ·

Thus Res
z=1

h(z) = a0 = Log(1) = 0. Moreover, since there are no negative exponents

in the Laurent series, 1 is a removable singularity.

2. Evaluate the following contour integrals using any method we discussed in class.

(a)

∫
C

csc2 z dz, where C be the contour given by the graph of the function y = cosx

from x = π
2

to x = 0. Express your answer in terms of e.

Solution: First notice that C begins at z = π
2

and ends at z = i. Since f(z) = csc2 z
has an antiderivative of F (z) = − cot z for all z 6= nπ for all n ∈ Z, and C does not
contain any of these points, we can apply the Fundamental Theorem of Contour
Integrals. ∫

C

csc2 z dz = − cot z
∣∣∣i
π
2

= − cot i = −cos i

sin i
=
i(e2 + 1)

e2 − 1



(b)

∫
C

z

(z − 2)2
dz, where C is the positively-oriented circle |z − i| = 2.

Solution: Since f(z) =
z

(z − 2)2
is analytic everywhere except at z = 2, which is

not on or enclosed by C, f is analytic on and inside C. Thus by the Cauchy-Goursat

theorem,

∫
C

z

(z − 2)2
dz = 0

(c)

∫
C

z2 − 1

2z3 + 2z2 + z
dz, where C is the positively-oriented unit circle.

Solution: We first find the singularities of f(z) =
z2 − 1

2z3 + 2z2 + z
. By factoring and

using the quadratic formula, we have:

2z3 + 2z2 + z = 0⇒ z(2z2 + 2z + 1) = 0⇒ z = 0,−1

2
+

1

2
i,−1

2
− 1

2
i

Since all of the singularities are enclosed by C, we will compute the integral by
computing the residue at infinity.

g(z) =
1

z2
f
(1

z

)
=

1− z2

z(z2 + 2z + 2)

Let φ(z) =
1− z2

2z2 + z + 2
. Then φ is analytic and nonzero at z = 0. Thus z = 0 is a

pole of order 1 and Res
z=0

g(z) = φ(0) = 1
2
. Thus Res

z=∞
f(z) = −1

2
and∫

C

z2 − 1

2z3 + 2z2 + z
dz = −2πiRes

z=∞
f(z) = πi

3. Consider the function f(z) =
cos2(πz)− 2esin(πz)

sin(πz)
.

(a) Show that z = n is a singular point of f for all n ∈ Z and that

Res
z=n

f(z) =

{
1
π

if n is odd

− 1
π

if n is even

Solution: f has an isolated singularity at z = n for all n ∈ Z. Let p(z) = cos2(πz)−
2esin(πz) and q(z) = sin(πz). Since q(n) = 0 and q′(n) = π cosnπ 6= 0, q has a zero
of order 1 at z = n for all n ∈ Z. Moreover, notice that q′(n) = π cosnπ = π if n
is even and q′(n) = π cosnπ = −π if n is odd. Now, since p and q are analytic at
z = n and p(n) = −1 6= 0, f has a pole of order 1 at z = n for all n and

Res
z=n

f(z) =
p(n)

q′(n)
=

{
1
π

if n is odd

− 1
π

if n is even



(b) Let C 2k+1
2

be the positively-oriented circle |z| = 2k+1
2

, where k is a nonnegative

integer. Show that ∫
C 2k+1

2

f(z) dz =

{
2i if k is odd

−2i if k is even

Solution: C 2k+1
2

encloses the singular points −k, . . . ,−1, 0, 1, . . . , k. Thus we can

use the Cauchy Residue Theorem to calculate the contour integral:∫
C 2k−1

2

f(z) = f(z) dz = 2πi(Res
z=−k

f(z) + · · ·+ Res
z=0

f(z) + · · ·+ Res
z=k

f(z))

By part (a), if k is odd, then the sum of the above residues is − 1
π

and if k is even,
then the sum is 1

π
. Thus we have∫

C 2k−1
2

f(z) dz =

{
2i if k is odd

−2i if k is even

4. Suppose f is analytic at a point z0. Show that there exists a positive real number R

such that if Cr is a circle of radius r centered at z0 and r < R, then

∫
Cr

f(z) dz = 0.

Solution: By definition, since f is analytic at z0, it is analytic in an ε−neighborhood
U of z0. Thus, if r < ε, then the circle Cr given by |z − z0| = r is contained in U . Thus
by the Cauchy-Goursat Theorem, the contour integral of f along Cr is 0.

5. Suppose f is analytic everywhere except at z1, z2 ∈ C. Let C1 and C2 be positively-
oriented circles of radius r centered at z1 and z2, respectively, and let C be a positively-
oriented contour enclosing C1 and C2. Show that∣∣∣ ∫

C

f(z) dz
∣∣∣ ≤ 2πr(M1 +M2)

where M1 and M2 are the maximum values of |f(z)| on C1 and C2, respectively.

Solution: Since f is analytic on each curve and on the region between the curves,∫
C

f(z) dz =

∫
C1

f(z) dz +

∫
C2

f(z) dz

By the triangle inequality, we have∣∣∣ ∫
C

f(z) dz
∣∣∣ ≤ ∣∣∣ ∫

C1

f(z) dz
∣∣∣+
∣∣∣ ∫

C2

f(z) dz
∣∣∣



Since C1 and C2 have length 2πr, we have that∣∣∣ ∫
C

f(z) dz
∣∣∣ ≤ ∣∣∣ ∫

C1

f(z) dz
∣∣∣+
∣∣∣ ∫

C2

f(z) dz
∣∣∣ ≤ 2πrM1 + 2πrM2 = 2πr(M1 +M2)

6. Is it possible for the power series
∞∑
n=1

nnzn to be the Maclaurin series expansion of some

function f that is analytic at 0?

Solution: Let’s first figure out where this series converges and diverges.

lim
n→∞

n
√
|nnzn| = lim

n→∞
n|z| =

{
0 if z = 0

∞ if z 6= 0

Thus, by the root test, the series diverges for all z 6= 0. By Taylor’s theorem, if f
is analytic at z = 0, then f has a (convergent) Maclaurin series expansion in some ε-
neighborhood of 0. But, since the series diverges in every ε-deleted neighborhood of 0,
it cannot be the Maclaurin series of some function that is analytic at 0.

7. I saw the following calculation on the internet recently:

i2 =
√
−1
√
−1 =

√
(−1)(−1) =

√
1 = 1⇒ i2 = 1⇒ i = ±1

There is obviously something wrong with this calculation. What is it?

Solution:
√
−1 = (−1)

1
2 is the set of square roots of −1, namely

√
−1 = {i,−i}. Thus

the product
√
−1
√
−1 is not well-defined and so equating it with 1 does not make sense.


