Math 421 Final Solutions

1. Determine all singular points of the following functions (except ∞).

Classify the isolated singular points and calculate the residue at each one (except ∞).
(a) $f(z)=\frac{\left(z^{6}-1\right) e^{\frac{1}{z}}}{z^{4}}$

Solution: f has an isolated singularity at $z=0$. It's Laurent series at $z=0$ is

$$
\frac{\left(z^{6}-1\right) e^{\frac{1}{z}}}{z^{4}}=\left(z^{2}-\frac{1}{z^{4}}\right) \sum_{n=0}^{\infty} \frac{(1 / z)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{1}{n!z^{n-2}}-\sum_{n=0}^{\infty} \frac{1}{n!z^{n+4}}
$$

There is one term with an exponent of -1 , namely the fourth term in the first series, which is $\frac{1}{6 z}$. Thus $\operatorname{Res}_{z=0} f(z)=\frac{1}{6}$.
(b) $f(z)=\frac{\log z}{z-1}$

Solution: f has an isolated singularity at $z=1$ and nonisolated singularities at all points on the nonpositive real axis. Since $\log (1)=0$, we cannot apply the theorem involving poles to deduce that 1 is a pole and to calculate the residue. Instead, we must consider the Laurent series of this function centered at $z=1$.
Since $\log z$ is analytic at 1 , it has a Taylor series $\log z=\sum_{n=0}^{\infty} a_{n}(z-1)^{n}$ in a disk centered at $z=1$. Thus f has a Laurent series centered at $z=1$ of the form

$$
\frac{\log z}{z-1}=\sum_{n=0}^{\infty} a_{n}(z-1)^{n-1}=\frac{a_{0}}{z-1}+a_{1}+a_{2}(z-1)+\cdots
$$

Thus Res $h(z)=a_{0}=\log (1)=0$. Moreover, since there are no negative exponents in the Laurent series, 1 is a removable singularity.
2. Evaluate the following contour integrals using any method we discussed in class.
(a) $\int_{C} \csc ^{2} z d z$, where C be the contour given by the graph of the function $y=\cos x$ from $x=\frac{\pi}{2}$ to $x=0$. Express your answer in terms of e.

Solution: First notice that C begins at $z=\frac{\pi}{2}$ and ends at $z=i$. Since $f(z)=\csc ^{2} z$ has an antiderivative of $F(z)=-\cot z$ for all $z \neq n \pi$ for all $n \in \mathbb{Z}$, and C does not contain any of these points, we can apply the Fundamental Theorem of Contour Integrals.

$$
\int_{C} \csc ^{2} z d z=-\left.\cot z\right|_{\frac{\pi}{2}} ^{i}=-\cot i=-\frac{\cos i}{\sin i}=\frac{i\left(e^{2}+1\right)}{e^{2}-1}
$$

(b) $\int_{C} \frac{z}{(z-2)^{2}} d z$, where C is the positively-oriented circle $|z-i|=2$.

Solution: Since $f(z)=\frac{z}{(z-2)^{2}}$ is analytic everywhere except at $z=2$, which is not on or enclosed by C, f is analytic on and inside C. Thus by the Cauchy-Goursat theorem, $\int_{C} \frac{z}{(z-2)^{2}} d z=0$
(c) $\int_{C} \frac{z^{2}-1}{2 z^{3}+2 z^{2}+z} d z$, where C is the positively-oriented unit circle.

Solution: We first find the singularities of $f(z)=\frac{z^{2}-1}{2 z^{3}+2 z^{2}+z}$. By factoring and using the quadratic formula, we have:

$$
2 z^{3}+2 z^{2}+z=0 \Rightarrow z\left(2 z^{2}+2 z+1\right)=0 \Rightarrow z=0,-\frac{1}{2}+\frac{1}{2} i,-\frac{1}{2}-\frac{1}{2} i
$$

Since all of the singularities are enclosed by C, we will compute the integral by computing the residue at infinity.

$$
g(z)=\frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\frac{1-z^{2}}{z\left(z^{2}+2 z+2\right)}
$$

Let $\phi(z)=\frac{1-z^{2}}{2 z^{2}+z+2}$. Then ϕ is analytic and nonzero at $z=0$. Thus $z=0$ is a pole of order 1 and $\operatorname{Res}_{z=0} g(z)=\phi(0)=\frac{1}{2}$. Thus $\operatorname{Res}_{z=\infty} f(z)=-\frac{1}{2}$ and

$$
\int_{C} \frac{z^{2}-1}{2 z^{3}+2 z^{2}+z} d z=-2 \pi i \operatorname{Res}_{z=\infty} f(z)=\pi i
$$

3. Consider the function $f(z)=\frac{\cos ^{2}(\pi z)-2 e^{\sin (\pi z)}}{\sin (\pi z)}$.
(a) Show that $z=n$ is a singular point of f for all $n \in \mathbb{Z}$ and that

$$
\operatorname{Res}_{z=n} f(z)= \begin{cases}\frac{1}{\pi} & \text { if } n \text { is odd } \\ -\frac{1}{\pi} & \text { if } n \text { is even }\end{cases}
$$

Solution: f has an isolated singularity at $z=n$ for all $n \in \mathbb{Z}$. Let $p(z)=\cos ^{2}(\pi z)-$ $2 e^{\sin (\pi z)}$ and $q(z)=\sin (\pi z)$. Since $q(n)=0$ and $q^{\prime}(n)=\pi \cos n \pi \neq 0, q$ has a zero of order 1 at $z=n$ for all $n \in \mathbb{Z}$. Moreover, notice that $q^{\prime}(n)=\pi \cos n \pi=\pi$ if n is even and $q^{\prime}(n)=\pi \cos n \pi=-\pi$ if n is odd. Now, since p and q are analytic at $z=n$ and $p(n)=-1 \neq 0, f$ has a pole of order 1 at $z=n$ for all n and

$$
\operatorname{Res}_{z=n} f(z)=\frac{p(n)}{q^{\prime}(n)}= \begin{cases}\frac{1}{\pi} & \text { if } n \text { is odd } \\ -\frac{1}{\pi} & \text { if } n \text { is even }\end{cases}
$$

(b) Let $C_{\frac{2 k+1}{2}}$ be the positively-oriented circle $|z|=\frac{2 k+1}{2}$, where k is a nonnegative integer. Show that

$$
\int_{\frac{C_{2 k+1}^{2}}{2}} f(z) d z= \begin{cases}2 i & \text { if } k \text { is odd } \\ -2 i & \text { if } k \text { is even }\end{cases}
$$

Solution: $C_{\frac{2 k+1}{2}}$ encloses the singular points $-k, \ldots,-1,0,1, \ldots, k$. Thus we can use the Cauchy Residue Theorem to calculate the contour integral:

$$
\int_{C_{\frac{2 k-1}{2}}} f(z)=f(z) d z=2 \pi i\left(\operatorname{Res}_{z=-k} f(z)+\cdots+\operatorname{Res}_{z=0} f(z)+\cdots+\operatorname{Res}_{z=k} f(z)\right)
$$

By part (a), if k is odd, then the sum of the above residues is $-\frac{1}{\pi}$ and if k is even, then the sum is $\frac{1}{\pi}$. Thus we have

$$
\int_{C_{\frac{2 k-1}{2}}} f(z) d z= \begin{cases}2 i & \text { if } k \text { is odd } \\ -2 i & \text { if } k \text { is even }\end{cases}
$$

4. Suppose f is analytic at a point z_{0}. Show that there exists a positive real number R such that if C_{r} is a circle of radius r centered at z_{0} and $r<R$, then $\int_{C_{r}} f(z) d z=0$.

Solution: By definition, since f is analytic at z_{0}, it is analytic in an ϵ-neighborhood U of z_{0}. Thus, if $r<\epsilon$, then the circle C_{r} given by $\left|z-z_{0}\right|=r$ is contained in U. Thus by the Cauchy-Goursat Theorem, the contour integral of f along C_{r} is 0 .
5. Suppose f is analytic everywhere except at $z_{1}, z_{2} \in \mathbb{C}$. Let C_{1} and C_{2} be positivelyoriented circles of radius r centered at z_{1} and z_{2}, respectively, and let C be a positivelyoriented contour enclosing C_{1} and C_{2}. Show that

$$
\left|\int_{C} f(z) d z\right| \leq 2 \pi r\left(M_{1}+M_{2}\right)
$$

where M_{1} and M_{2} are the maximum values of $|f(z)|$ on C_{1} and C_{2}, respectively.
Solution: Since f is analytic on each curve and on the region between the curves,

$$
\int_{C} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z
$$

By the triangle inequality, we have

$$
\left|\int_{C} f(z) d z\right| \leq\left|\int_{C_{1}} f(z) d z\right|+\left|\int_{C_{2}} f(z) d z\right|
$$

Since C_{1} and C_{2} have length $2 \pi r$, we have that

$$
\left|\int_{C} f(z) d z\right| \leq\left|\int_{C_{1}} f(z) d z\right|+\left|\int_{C_{2}} f(z) d z\right| \leq 2 \pi r M_{1}+2 \pi r M_{2}=2 \pi r\left(M_{1}+M_{2}\right)
$$

6. Is it possible for the power series $\sum_{n=1}^{\infty} n^{n} z^{n}$ to be the Maclaurin series expansion of some function f that is analytic at 0 ?

Solution: Let's first figure out where this series converges and diverges.

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|n^{n} z^{n}\right|}=\lim _{n \rightarrow \infty} n|z|= \begin{cases}0 & \text { if } z=0 \\ \infty & \text { if } z \neq 0\end{cases}
$$

Thus, by the root test, the series diverges for all $z \neq 0$. By Taylor's theorem, if f is analytic at $z=0$, then f has a (convergent) Maclaurin series expansion in some ϵ neighborhood of 0 . But, since the series diverges in every ϵ-deleted neighborhood of 0 , it cannot be the Maclaurin series of some function that is analytic at 0 .
7. I saw the following calculation on the internet recently:

$$
i^{2}=\sqrt{-1} \sqrt{-1}=\sqrt{(-1)(-1)}=\sqrt{1}=1 \Rightarrow i^{2}=1 \Rightarrow i= \pm 1
$$

There is obviously something wrong with this calculation. What is it?

Solution: $\sqrt{-1}=(-1)^{\frac{1}{2}}$ is the set of square roots of -1 , namely $\sqrt{-1}=\{i,-i\}$. Thus the product $\sqrt{-1} \sqrt{-1}$ is not well-defined and so equating it with 1 does not make sense.

