Math 421 Final Solutions

1. Determine all singular points of the following functions (except oo).
Classify the isolated singular points and calculate the residue at each one (except o).
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Solution: f has an isolated singularity at z = 0. It’s Laurent series at z = 0 is
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There is one term with an exponent of —1, namely the fourth term in the first
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Solution: f has an isolated singularity at z = 1 and nonisolated singularities at all
points on the nonpositive real axis. Since Log(1) = 0, we cannot apply the theorem
involving poles to deduce that 1 is a pole and to calculate the residue. Instead, we

must consider the Laurent series of this function centered at z = 1.
o

Since Logz is analytic at 1, it has a Taylor series Logz = Zan(z —1)" in a disk

centered at z = 1. Thus f has a Laurent series centered at 2 = 1 of the form
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Thus Re§ h(z) = ap = Log(1) = 0. Moreover, since there are no negative exponents
z=

in the Laurent series, 1 is a removable singularity.

2. Evaluate the following contour integrals using any method we discussed in class.

(a)

/ csc? zdz, where C be the contour given by the graph of the function y = cosz
c

from x = § to x = 0. Express your answer in terms of e.
Solution: First notice that C' begins at z = 5 and ends at z = 7. Since f(z) = csc? z
has an antiderivative of F'(z) = — cot z for all z # nr for all n € Z, and C' does not
contain any of these points, we can apply the Fundamental Theorem of Contour
Integrals.
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(b) / ﬁ dz, where C'is the positively-oriented circle |z — i| = 2.
c\z—

Solution: Since f(z) = is analytic everywhere except at z = 2, which is

(z—2)
not on or enclosed by C', f is analytic on and inside C'. Thus by the Cauchy-Goursat
theorem, ; ﬁ dz=0
()/ =1 . where C'is the positively-oriented unit circ]
c ———————dz, where C is the positively-oriented unit circle.
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Solution: We first find the singularities of f(z) = 22’312—2’2% By factoring and
using the quadratic formula, we have:
3 2 2 1 1 . 1 1 .
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Since all of the singularities are enclosed by C', we will compute the integral by
computing the residue at infinity.
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pole of order 1 and Rg% g(z) = ¢(0) = % Thus Res f(z) = —% and

Then ¢ is analytic and nonzero at z = 0. Thus z =0 is a
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3. Consider the function f(z) = n(r2)
sin(7z

(a) Show that z = n is a singular point of f for all n € Z and that

if n is odd

% if n is even
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Solution: f has an isolated singularity at z = n for alln € Z. Let p(z) = cos?(rz)—
2e5m(™2) and ¢(z) = sin(7z). Since g(n) = 0 and ¢(n) = 7 cosnxt # 0, ¢ has a zero
of order 1 at z = n for all n € Z. Moreover, notice that ¢'(n) = mcosnm = 7 if n
is even and ¢/(n) = mcosnm = —7 if n is odd. Now, since p and ¢ are analytic at
z=mnand p(n) = —1# 0, f has a pole of order 1 at z = n for all n and
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(b) Let Czs1 be the positively-oriented circle |z| = , where k is a nonnegative

2
integer. Show that

Solution: C41 encloses the singular points —k,...,—1,0,1,... k. Thus we can
2
use the Cauchy Residue Theorem to calculate the contour integral:
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By part (a), if k is odd, then the sum of the above residues is —% and if k is even,
then the sum is % Thus we have

2i  if kis odd
[ g B ko
Cor_1 —2¢ if k is even

4. Suppose f is analytic at a point z5. Show that there exists a positive real number R

such that if C, is a circle of radius r centered at zp and r < R, then f(z)dz=0.
Cr

Solution: By definition, since f is analytic at zj, it is analytic in an e—neighborhood
U of zg. Thus, if < €, then the circle C, given by |z — 25| = r is contained in U. Thus
by the Cauchy-Goursat Theorem, the contour integral of f along C. is 0.

5. Suppose f is analytic everywhere except at z1,2o € C. Let C; and C5 be positively-
oriented circles of radius r centered at z; and zs, respectively, and let C' be a positively-
oriented contour enclosing C'; and C5. Show that

‘/Cf(z) dz‘ < 2mr(M; + Ms)

where M; and M, are the maximum values of |f(z)| on C; and Cs, respectively.

Solution: Since f is analytic on each curve and on the region between the curves,
/ fdz= [ f)de+ [ fl2)dz
C C1 Ca
By the triangle inequality, we have
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Since C; and C5 have length 277, we have that

‘/Cf(z)dZ) < )/c f(Z)dz‘—i-‘/C f(z)dz‘ < 2mr M, + 27 My = 2mr(M,y + My)

o0
. Is it possible for the power series E n"z" to be the Maclaurin series expansion of some
n=1

function f that is analytic at 07

Solution: Let’s first figure out where this series converges and diverges.
0 ifz=0
lim {/|n"z"| = lim n|z| =

Thus, by the root test, the series diverges for all z # 0. By Taylor’s theorem, if f
is analytic at z = 0, then f has a (convergent) Maclaurin series expansion in some e-
neighborhood of 0. But, since the series diverges in every e-deleted neighborhood of 0,
it cannot be the Maclaurin series of some function that is analytic at 0.

. I saw the following calculation on the internet recently:
P=V_IlvV-1=/(-D)(-1)=Vi=1=i=1=i==l1

There is obviously something wrong with this calculation. What is it?

Solution: v/—1 = (—1)z is the set of square roots of —1, namely v/—1 = {i, —i}. Thus
the product v/ —14/—1 is not well-defined and so equating it with 1 does not make sense.



