Final Practice Problem Solutions
1.)

$$
\begin{aligned}
& z=-8-8 \sqrt{3} i=16\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)=16 e^{-i \frac{2 \pi}{3}} \\
& \Rightarrow z^{1 / 4}=\left\{2 e^{-i \frac{\pi}{4}}, 2 e^{i \frac{\pi}{3}}, 2 e^{i \frac{\sqrt{4}}{6}}, 2 e^{i \frac{4 \pi}{3}}\right\} \\
&=\left\{2\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right), 2\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right), 2\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right), 2\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right)\right\} \\
&=\{\sqrt{3}-i, 1+\sqrt{3} i,-\sqrt{3}+i,-1-\sqrt{3} i\}
\end{aligned}
$$

2.) Let $u(x, y)=\cos x-\sin y, \quad v(x, y)=y$
then $u_{x}=-\sin x \quad v_{x}=0$. These are continuous

$$
\begin{aligned}
& u_{y}=\cos y \quad v_{y}=1 \quad \text { everywhere. } \\
& u_{x}=v_{y} \Leftrightarrow x= \pm \frac{3 \pi}{2}, \pm \frac{z_{k}}{2}, \pm \frac{\|_{t e}}{2}, \ldots \\
& u_{y}=-v_{x} \Leftrightarrow y= \pm \frac{2}{2}, \pm \frac{3 \pi}{2}, \ldots
\end{aligned}
$$

thus f is differentiable at $z=\frac{3 \pi}{2}-\frac{\pi}{2} i$
However, it is not aralytic there since the Cauchy Romeronn equations are not satisfied for all points in $0<\left(\left.z-\left(\frac{\pi}{2}-\frac{3 \pi}{2} i\right) \right\rvert\,<\frac{\pi}{2}\right.$
3.) Recall that if f is entire, then $u(x, y)=\cos x \sin y$ is harmonic on C. However,

$$
\begin{array}{ll}
u_{x}=-\sin x \sin y & u_{y}=\cos x \cos y \\
u_{x x} & =-\cos x \sin y \\
u_{y y} & =-\cos x \sin y
\end{array} \Rightarrow u_{x x}+u_{y y} \neq 0,
$$

$\Rightarrow u$ is not harmonic on $\mathbb{C} \Rightarrow$ there is no function v such that f is entire. In particular, u dusnot have a harmonic conjugate.
4.) By the Maximum Modulus Principle, since f is analytic and nonconstant on $|z|<1$, I does not have a maximum on $|z|<1$. It does have a max on $|z| \leq 1$, however, which occurs on the boundary $|z|=1$.
Let $z=x+i y$.

$$
\begin{aligned}
& |f(z)|=\left|e^{2 z}\right|=\left|e^{2 x} e^{2 i y}\right|=e^{2 x}\left|e^{i(z y)}\right|=e^{2 x} \\
& \text { |f }|z|=\sqrt{x^{2}+y^{2}}=1 \text {, then the largest } x \text { can be is } 1 \text {. } \\
& \text { this } \mid f\left(z| |=e^{2 x} \text { se } e^{2} \text { for all } z\right. \text { on unit circle. }
\end{aligned}
$$

thus $|f(z)|=e^{2 x} \leq e^{2}$ for all z on unit circle (since e^{x} is on increasing function)
By the Cauchy Inequality, sue f is orrlytic on t inside the unit circle, which is centered at 0 ,

$$
\left|f^{(3)}(0)\right| \leq \frac{3!e^{2}}{1}=6 e^{2}
$$

5.) By Liouville's theorem, the only entire, bounded functions are constant functions.
These are all of the form $f(z)=c$, where $c \in \mathbb{C}$.
6.) a) Since $f(z)=z+1$ is analytic on and inside C, which is closed, by the Cauclyy-Goursat theorem,

$$
\int_{c} z+1 d z=0
$$

b) Since $f(z)=z^{-2}$ has an antiderivatice $F(z)=-z^{-1}$ on $\mathbb{C}-\{0\}$ and C is in $\mathbb{C}-\{0\}$, by the fund. the,

$$
\int_{c} \frac{1}{z^{2}} d z=-\left.\frac{1}{z}\right|_{i} ^{-i}=\frac{1}{i}+\frac{1}{i}=\frac{2}{i}=-2 i
$$

c) Since $f(z)=\frac{1}{z^{2}}$ has an antiderivative on $\mathbb{C}-\{0\}$, and C is cloredin $\mathbb{C}-\{0\}$, by the Findormental theorem of Contour Integrals,

$$
\int_{c} z^{-2} d z=0
$$

2.) a) Let $f(z)=1$. Then f is analytic on \pm inside C

Thus

$$
\int_{c} \frac{1}{z^{2}} d z=2 \pi i f^{\prime}(0)=2 \pi i(0)=0
$$

b) Let $f(z)=\frac{\cos z}{z^{2}+1}$.

Then f is analytic on x inside C since it is ardytiz ecrenpwhere except Thus $z= \pm i$.

$$
\int_{c} \frac{\cos z}{(z-1)\left(z^{2}+1\right)} d z=\int_{c} \frac{\frac{\cos 2}{z^{2}+1}}{z-1} d z=2 \pi i f(1)=\pi i \cos (1)
$$

c) Se Solutions to HW8.
8.) a) $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}(z-i)^{n}$

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{2^{n+1}}{(n+1)!}(z-i)^{n+1}}{\frac{2^{n}}{n!}(z-i)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{2}{n+1}|z-i|=0 \text { for all } z
$$

Thus, by the ratio lest, the series converges for all $z \in \mathbb{C}$.
b) $\sum_{n=0}^{\infty} n!(z-i)^{n}$

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(z-i)^{n+1}}{n!(z-i)^{n}}\right|=\lim _{n \rightarrow \infty}(n+1)(z-i)= \begin{cases}\infty & \text { if } z \neq i \\ 0 & \text { if } z=i\end{cases}
$$

Thus, by the ratiotest, the series converges if ord only if $z=i$.
c) $\sum_{n=0}^{\infty} n(z-i)^{n}$

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+1)(z-i)^{n+1}}{n(z-i)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{n+1}{n}|z-i|=|z-i|
$$

By the ratio test, the serves converges when $|z-i|<\mid$ and diverges when $|z-i|>1$.
When $|z-i|=1$, notice that

$$
\lim _{n \rightarrow \infty}\left|n(z-i)^{n}\right|=\lim _{n \rightarrow \infty} n|z-i|^{n}=\lim _{n \rightarrow \infty} n=\infty \neq 0
$$

thus $\lim _{n \rightarrow \infty} \lim _{n \rightarrow \infty} n(z-i)^{n} \neq 0 \quad\left(\right.$ by $\# 2$ on ${ }^{n \rightarrow \infty}$ Ho a) and so the serves diverges by the divergence test.
\Rightarrow Scenes converges on $|z-i|<1$, diverges on $|z-i| \geq 1$.
9.) (a) $f(z)=\frac{z+1}{z^{3}-z^{2}}$ has isolated singularities $z=0$ and $z=1$

$$
\begin{aligned}
\frac{z+1}{z^{3}-z^{2}} & =-\frac{z+1}{z^{2}} \frac{1}{1-z}=-\frac{z+1}{z^{2}} \sum_{n=0}^{\infty} z^{n}=\left(-\frac{1}{z}-\frac{1}{z^{2}}\right)\left(1+z+z^{2}+\infty\right) \\
& =-\frac{1}{z}-1-z-z^{2}-z^{3} \cdots \\
& -\frac{1}{z^{2}}-\frac{1}{z}-1-z-z^{2}+\cdots \\
& =-\frac{1}{z^{2}}-\frac{2}{z}-2-2 z^{2} \ldots
\end{aligned}
$$

Thus $z=0$ is a pole of order 2 and $\operatorname{Res}_{z=0} f(z)=-2$

$$
\begin{aligned}
\frac{z=1}{\frac{z+1}{z^{3}-z^{2}}} & =\frac{z+1}{z-1} \frac{1}{z^{2}}=\frac{z+1}{(z-1)}\left(\frac{1}{1-(1-z)}\right)^{2} \\
& =\frac{1-z)-2}{1-z}\left(\sum_{n=0}^{\infty}(1-z)^{n}\right)\left(\sum_{n=0}^{\infty}(1-z)^{n}\right) \\
& =\left(1-\frac{2}{1-z}\right)\left(1+(1-z)+(1-z)^{2}+-\right)\left(1+(1-z)+(1-z)^{2}+\cdots\right)
\end{aligned}
$$

Multiplying this out, we see that there is only one term with negative exponent: $\frac{-2}{1-z}$
$\Rightarrow z=1$ is a pole of order 1 and $\operatorname{Res}_{z=1} f(z)=-2$.
(b) $g(z)$ has an isolated singularity at $z=0$.

$$
\begin{aligned}
g(z)=\frac{\cosh z-1}{z^{2}} & =\frac{1}{z^{2}}\left(-1+\sum_{n=0}^{n} \frac{z^{2 n}}{(2 n)!}\right) \\
& =\frac{1}{z^{2}}\left(-1+\left(1+\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+--1\right)\right) \\
& =\frac{1}{z^{2}}\left(\frac{z^{2}}{2!}+\frac{z^{4}}{4!}+\frac{z^{6}}{6!}+-\right) \\
& =\frac{1}{2!}+\frac{z^{2}}{4!}+\frac{z^{4}}{6!}+\cdots
\end{aligned}
$$

There are noterms with regative exponents $\Rightarrow D$ is a removable singularity.
10.) $f(z)=\tan \left(\frac{1}{z}\right)=\frac{\sin \left(\frac{1}{z}\right)}{\cos \left(\frac{1}{z}\right)}$
f has singularities at $z=0, \frac{1}{(2 x+1) \pi}$ for all $k \in Z$.
Now, curry Σ-deleted nbhd of 0 ($0<|z|<\Sigma$) contains a singularity, since for all k such that $(2 k+1) \pi>\frac{1}{\varepsilon}$ we have $\frac{1}{(2(1+1) \pi}<\sum$.
Thus $z=0$ is not isolated.
Similarly, for every neighborhood 11 of $\infty(|z|>N)$, there exists singularities in ll
Thus A is not an isolated singularity.
11) a) Let $f(z)=\frac{1}{z^{2}}$. This is already in Lavent series form. and $\operatorname{Res}_{z=0} f(z)=0$.
Thus $\int_{c} \frac{1}{z^{2}} d z=2 \pi i \operatorname{Res} f(z)=0$.
b) $\int_{0}^{2 \pi} \frac{4\left(\cos ^{2} t-\sin ^{2} t\right)}{5-4 \cos t} d t=\int_{c} \frac{4\left(\frac{z+z^{-1}}{2}\right)^{2}-4\left(\frac{z-z^{-1}}{2 i}\right)^{2}}{5-4\left(\frac{z+z^{2}}{2}\right)} \frac{1}{i z} d z$
$=2 i \int_{c} \frac{z^{4}+1}{z^{2}(2 z-1)(z-2)} d z$, where C is the positicly
$f(z)=\frac{z^{4}+1}{z^{2}(2 z-1)(z-2)}$ has isolated
singular points at
$z=0, z=\frac{1}{2}$, and $z=2$
Since $O \pm \frac{1}{2}$ are enclosed by C, by the Cauchy Residue theorem,

$$
2 i \int_{c} f(z) d z=2 i\left(2 \pi i \operatorname{Res}_{z=0} f(z)+2 \pi i \operatorname{ReS}_{z=1 / 2} f(z) .\right)
$$

Residue at $z=0$
Let $\phi|z|=\frac{z^{4}+1}{(z-1)(z-2)}$. Then ϕ is analytic on nonzero at $z=0$

Thus $z=0$ is a pole of order 2 ard

$$
\operatorname{Res}_{z=0} f(z)=\frac{\phi^{\prime}(0)}{1!}=\left.\frac{\left(4 z^{3}\right)(2 z-1)(z-2)-(2(2-2)+(2 z-1))\left(z^{4}+1\right)}{((2 z-1)(z-2))^{2}}\right|_{z=0}=\frac{5}{4}
$$

Residue at $z=1 / 2$
Let $\phi|z|=\frac{z^{4}+1}{2 z^{2}(z-2)}$. Then ϕ is andytic on nonzero at $z=1 / 2$
Thus $z=1 / 2$ is a pole of order 1 ard

$$
\operatorname{Res}_{z=1 / 2} f(z)=\phi(1 / 2)=\frac{-17}{12}
$$

Therefore, $\int_{0}^{2 \pi} \frac{\left.4 \cos ^{2} t-5 m^{2} t\right)}{5-4 \cos t} d t=2 i\left(2 \pi i\left(\frac{5}{4}\right)+2 \pi i\left(\frac{-17}{12}\right)\right)$

$$
=-5 \pi+\frac{17 \pi}{3}=\frac{2 \pi}{3}
$$

12.) $f(z)=\frac{\cos \left(\frac{1}{z}\right)}{z^{2}\left(z^{2}-1\right)}$ has isolated singularities at $O, \pm 1$, which are all enclosed by C.
Thus $\int_{c} \frac{\cos \left(\frac{1}{z}\right)}{z^{2}\left(z^{2}-1\right)} d z=-2 \pi i \operatorname{Res}_{z=0} f(z)=2 \pi i \operatorname{Res}_{z=0} \frac{1}{z^{2}} f\left(\frac{1}{z}\right)$.

$$
g(z)=\frac{1}{z^{2}} f\left(\frac{1}{z}\right)=\frac{1}{z^{2}}\left(\frac{\cos (z)}{\frac{1}{z^{2}}\left(\frac{1}{z^{2}}-\frac{1}{z}\right)}\right)=\frac{z^{2} \cos (z)}{1-z}
$$

Since $\frac{z^{2} \cos z}{1-z}$ is analytic at $z=0$, 0 is ${ }^{1-z}$ removable singularity of g.
Thus $\operatorname{Res} g(z)=0 \Rightarrow \operatorname{Res}_{z=\infty} f(z)=0$.

$$
\Rightarrow \quad \int_{c} \frac{\cos \left(\frac{1}{2}\right)}{z^{z}\left(z^{2}-1\right)} d z=-2 \pi i \operatorname{Res}_{z=\infty} f(z)=0
$$

13.) Let $p(z)=2 \cos z^{2}, q(z)=1+z-e^{z}$.

Then pard q are analytic at $z=0$ and $p(0) \neq 0$.
Moreover, Since $g(0)=0, g^{\prime}(0)=0, g^{\prime \prime}(0)=-1 \neq 0$,
ghas a zero of order 2 at $z=0$.
Thus $f(z)=\frac{2 \cos z^{2}}{1+z-e^{2}}$ has a pole of order 2 at $z=0$.

