
Exam 2 Solutions

1. Let W ⊂ R3 be the solid bounded by z = 1− y2, z = 0, x = 0, and x = 1.

(a) Find the volume of W .

Solution:
By considering the sketch of W above, we can describe W by
W = {(x, y, z) | 0 ≤ x ≤ 1,−1 ≤ y ≤ 1, 0 ≤ z ≤ 1− y2}. Thus the volume of W is∫∫∫
W

1 dV =
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∫
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(b) Suppose W has constant density C. Find the mass of W .

Solution: The mass of W is

∫∫∫
W

C dV = C

∫∫∫
W

1 dV =
4

3
C, by part (a).

2. Let D be the region in the first quadrant bounded by xy = 1, xy = 2, y = x, and y = 2x.

Use the change of variables u = x, v = xy to rewrite the double integral

∫∫
D

xexy dA in

terms of u and v. Do not evaluate the integral.

Solution: Since u = x, v = xy, we have that y =
v

x
=

v

u
. Note that, in the re-

gion we are considering, since x, y > 0, we have u, v > 0. Let T (u, v) = (u, v
u
). Then
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u
, since u > 0 in the region we are considering.

Now, xy = 1 ⇒ v = 1, xy = 2 ⇒ v = 2, y = x ⇒ v = u2, and y = 2x ⇒ v = 2u2. Thus
the region in the (u, v)−plane is bounded by v = 1, v = 2, v = u2, and v = 2u2, where
u, v > 0. This region is shown below.

Thus the integral is
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3. Let W = {(x, y, z) ∈ R3 | 1 ≤ x2 + y2 + z2 ≤ 2, x ≥ 0, y ≥ 0}.

(a) Rewrite the triple integral

∫∫∫
W

(x2 + z2)ex
2+y2+z2 dV in spherical coordinates. Do

not evaluate the integral.



Solution: W is a quarter of the region between two spheres as depicted below.

In spherical coordinates, W = {(ρ, θ, φ) | 1 ≤ ρ ≤
√

2, 0 ≤ θ ≤ π
2
, 0 ≤ φ ≤ π}. Thus∫∫∫
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ρ2 sinφ dρ dθ dφ

(b) If ex
2+y2+z2 is the density of W at point (x, y, z), what does the integral in part (a)

represent?

Solution: The integral represents the moment of inertia of W about the y-axis.

4. It turns out that the only curves in R3 that have constant curvature are straight lines,
circles, and spirals/helixes. Show that the helix C ⊂ R3 parametrized by
c(t) = (cos t, sin t, t) has constant curvature.

Solution:

c′(t) = (− sin t, cos t, 1) and c′′(t) = (− cos t,− sin t, 0).

c′(t)× c′′(t) = (sin t,− cos t, sin2 t+ cos2 t) = (sin t,− cos t, 1).

Thus κ(t) =
||c′(t)× c′′(t)||
||c′(t)||3

=

√
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(
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=

√
2

√
2
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2
.

Since κ(t) = 1
2

for all t, C has constant curvature.

5. Let C ⊂ R2 be parametrized by c(t) = (3
5
t+ 1, 3− 4

5
t).

(a) Is C smooth? Why or why not?

Solution: Since c′(t) = (3
5
,−4

5
) is continuous and not equal to 0, C is smooth.

(b) Show that c is a parametrization with respect to arc length.

Solution: Since ||c′(t)|| =
√

(3
5
)2 + (−4

5
)2 = 1 for all t, c is a parametrization with

respect to arc length.



(c) Find the length of C between (1, 3) and (4,−1). (There are multiple ways to do
this).

Solution: (1, 3) corresponds to t = 0 and (4,−1) corresponds to t = 5. Since c
is a parametrization with respect to arc length, the length between these points is 5.

Alternatively, using the arc length formula, we have

∫ 5

0

||c′(t)|| dt =

∫ 5

0

1 dt = 5.

Alternatively, since C is a straight line, the arc length is simply the distance between
the points (1, 3) and (4,−1), which is

√
(1− 4)2 + (3− (−1))2 = 5.


