Exam 2 Solutions

1. Let $W \subset \mathbb{R}^3$ be the solid bounded by $z = 1 - y^2$, z = 0, x = 0, and x = 1. (a) Find the volume of W.

Solution:

By considering the sketch of W above, we can describe W by $W = \{(x, y, z) \mid 0 \le x \le 1, -1 \le y \le 1, 0 \le z \le 1 - y^2\}$. Thus the volume of W is

$$\iiint_{W} 1 \, dV = \int_{0}^{1} \int_{-1}^{1} \int 0^{1-y^2} 1 \, dz \, dy \, dx = \int_{0}^{1} \int_{-1}^{1} (1-y^2) \, dy \, dx = \int_{0}^{1} \frac{4}{3} \, dx = \frac{4}{3}$$

(b) Suppose W has constant density C. Find the mass of W.

Solution: The mass of W is
$$\iiint_W C \, dV = C \iiint_W 1 \, dV = \frac{4}{3}C$$
, by part (a).

2. Let *D* be the region in the first quadrant bounded by xy = 1, xy = 2, y = x, and y = 2x. Use the change of variables u = x, v = xy to rewrite the double integral $\iint_{D} xe^{xy} dA$ in terms of *u* and *v*. Do **not** evaluate the integral.

Solution: Since u = x, v = xy, we have that $y = \frac{v}{x} = \frac{v}{u}$. Note that, in the region we are considering, since x, y > 0, we have u, v > 0. Let $T(u, v) = (u, \frac{v}{u})$. Then $|\det \mathbf{D}T(u, v)| = \left|\det \begin{bmatrix} 1 & 0\\ -\frac{v^2}{u} & \frac{1}{u} \end{bmatrix}\right| = |\frac{1}{u}| = \frac{1}{u}$, since u > 0 in the region we are considering.

Now, $xy = 1 \Rightarrow v = 1$, $xy = 2 \Rightarrow v = 2$, $y = x \Rightarrow v = u^2$, and $y = 2x \Rightarrow v = 2u^2$. Thus the region in the (u, v)-plane is bounded by v = 1, v = 2, $v = u^2$, and $v = 2u^2$, where u, v > 0. This region is shown below.

Thus the integral is
$$\iint_{D} xe^{xy} dA = \int_{1}^{2} \int_{u^{2}}^{2u^{2}} ue^{v} \frac{1}{u} du dv = \int_{1}^{2} \int_{u^{2}}^{2u^{2}} e^{v} du dv$$

3. Let $W = \{(x, y, z) \in \mathbb{R}^3 \mid 1 \le x^2 + y^2 + z^2 \le 2, x \ge 0, y \ge 0\}.$

(a) Rewrite the triple integral $\iiint_W (x^2 + z^2)e^{x^2 + y^2 + z^2} dV$ in spherical coordinates. Do **not** evaluate the integral.

Solution: W is a quarter of the region between two spheres as depicted below. In spherical coordinates, $W = \{(\rho, \theta, \phi) \mid 1 \le \rho \le \sqrt{2}, 0 \le \theta \le \frac{\pi}{2}, 0 \le \phi \le \pi\}$. Thus

(b) If $e^{x^2+y^2+z^2}$ is the density of W at point (x, y, z), what does the integral in part (a) represent?

Solution: The integral represents the moment of inertia of W about the y-axis.

4. It turns out that the only curves in \mathbb{R}^3 that have constant curvature are straight lines, circles, and spirals/helixes. Show that the helix $C \subset \mathbb{R}^3$ parametrized by $\mathbf{c}(t) = (\cos t, \sin t, t)$ has constant curvature.

Solution:

$$\mathbf{c}'(t) = (-\sin t, \cos t, 1) \text{ and } \mathbf{c}''(t) = (-\cos t, -\sin t, 0).$$

$$\mathbf{c}'(t) \times \mathbf{c}''(t) = (\sin t, -\cos t, \sin^2 t + \cos^2 t) = (\sin t, -\cos t, 1).$$

Thus
$$\kappa(t) = \frac{||\mathbf{c}'(t) \times \mathbf{c}''(t)||}{||\mathbf{c}'(t)||^3} = \frac{\sqrt{\sin^2 t + \cos^2 t + 1}}{(\sqrt{\cos^2 t + \sin^2 t + 1})^3} = \frac{\sqrt{2}}{\sqrt{2}^3} = \frac{1}{2}.$$

Since $\kappa(t) = \frac{1}{2}$ for all t, C has constant curvature.

- 5. Let $C \subset \mathbb{R}^2$ be parametrized by $\mathbf{c}(t) = (\frac{3}{5}t + 1, 3 \frac{4}{5}t)$.
 - (a) Is C smooth? Why or why not?

Solution: Since $\mathbf{c}'(t) = (\frac{3}{5}, -\frac{4}{5})$ is continuous and not equal to $\mathbf{0}$, C is smooth.

(b) Show that **c** is a parametrization with respect to arc length.

Solution: Since $||\mathbf{c}'(t)|| = \sqrt{(\frac{3}{5})^2 + (-\frac{4}{5})^2} = 1$ for all t, \mathbf{c} is a parametrization with respect to arc length.

(c) Find the length of C between (1,3) and (4,-1). (There are multiple ways to do this).

Solution: (1,3) corresponds to t = 0 and (4, -1) corresponds to t = 5. Since **c** is a parametrization with respect to arc length, the length between these points is 5.

Alternatively, using the arc length formula, we have $\int_0^5 ||\mathbf{c}'(t)|| dt = \int_0^5 1 dt = 5.$

Alternatively, since C is a straight line, the arc length is simply the distance between the points (1,3) and (4,-1), which is $\sqrt{(1-4)^2 + (3-(-1))^2} = 5$.