Exam 2 Solutions

1. Let $W \subset \mathbb{R}^{3}$ be the solid bounded by $z=1-y^{2}, z=0, x=0$, and $x=1$.
(a) Find the volume of W.

Solution:

By considering the sketch of W above, we can describe W by $W=\left\{(x, y, z) \mid 0 \leq x \leq 1,-1 \leq y \leq 1,0 \leq z \leq 1-y^{2}\right\}$. Thus the volume of W is

$$
\iiint_{W} 1 d V=\int_{0}^{1} \int_{-1}^{1} \int 0^{1-y^{2}} 1 d z d y d x=\int_{0}^{1} \int_{-1}^{1}\left(1-y^{2}\right) d y d x=\int_{0}^{1} \frac{4}{3} d x=\frac{4}{3}
$$

(b) Suppose W has constant density C. Find the mass of W.

Solution: The mass of W is $\iiint_{W} C d V=C \iiint_{W} 1 d V=\frac{4}{3} C$, by part (a).
2. Let D be the region in the first quadrant bounded by $x y=1, x y=2, y=x$, and $y=2 x$. Use the change of variables $u=x, v=x y$ to rewrite the double integral $\iint_{D} x e^{x y} d A$ in terms of u and v. Do not evaluate the integral.

Solution: Since $u=x, v=x y$, we have that $y=\frac{v}{x}=\frac{v}{u}$. Note that, in the region we are considering, since $x, y>0$, we have $u, v>0$. Let $T(u, v)=\left(u, \frac{v}{u}\right)$. Then $|\operatorname{det} \mathbf{D} T(u, v)|=\left|\operatorname{det}\left[\begin{array}{cc}1 & 0 \\ -\frac{v}{u}^{2} & \frac{1}{u}\end{array}\right]\right|=\left|\frac{1}{u}\right|=\frac{1}{u}$, since $u>0$ in the region we are considering. Now, $x y=1 \Rightarrow v=1, x y=2 \Rightarrow v=2, y=x \Rightarrow v=u^{2}$, and $y=2 x \Rightarrow v=2 u^{2}$. Thus the region in the (u, v)-plane is bounded by $v=1, v=2, v=u^{2}$, and $v=2 u^{2}$, where $u, v>0$. This region is shown below.
Thus the integral is $\iint_{D} x e^{x y} d A=\int_{1}^{2} \int_{u^{2}}^{2 u^{2}} u e^{v} \frac{1}{u} d u d v=\int_{1}^{2} \int_{u^{2}}^{2 u^{2}} e^{v} d u d v$
3. Let $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 1 \leq x^{2}+y^{2}+z^{2} \leq 2, x \geq 0, y \geq 0\right\}$.
(a) Rewrite the triple integral $\iiint_{W}\left(x^{2}+z^{2}\right) e^{x^{2}+y^{2}+z^{2}} d V$ in spherical coordinates. Do not evaluate the integral.

Solution: W is a quarter of the region between two spheres as depicted below.
In spherical coordinates, $W=\left\{(\rho, \theta, \phi) \mid 1 \leq \rho \leq \sqrt{2}, 0 \leq \theta \leq \frac{\pi}{2}, 0 \leq \phi \leq \pi\right\}$. Thus

$$
\iiint_{W}\left(x^{2}+z^{2}\right) e^{x^{2}+y^{2}+z^{2}} d V=\int_{0}^{\pi} \int_{0}^{\frac{\pi}{2}} \int_{1}^{\sqrt{2}}\left(\rho^{2} \sin ^{2} \phi \cos ^{2} \theta+\rho^{2} \cos ^{2} \phi\right) e^{\rho^{2}} \rho^{2} \sin \phi d \rho d \theta d \phi
$$

(b) If $e^{x^{2}+y^{2}+z^{2}}$ is the density of W at point (x, y, z), what does the integral in part (a) represent?

Solution: The integral represents the moment of inertia of W about the y-axis.
4. It turns out that the only curves in \mathbb{R}^{3} that have constant curvature are straight lines, circles, and spirals/helixes. Show that the helix $C \subset \mathbb{R}^{3}$ parametrized by $\mathbf{c}(t)=(\cos t, \sin t, t)$ has constant curvature.

Solution:

$\mathbf{c}^{\prime}(t)=(-\sin t, \cos t, 1)$ and $\mathbf{c}^{\prime \prime}(t)=(-\cos t,-\sin t, 0)$.
$\mathbf{c}^{\prime}(t) \times \mathbf{c}^{\prime \prime}(t)=\left(\sin t,-\cos t, \sin ^{2} t+\cos ^{2} t\right)=(\sin t,-\cos t, 1)$.
Thus $\kappa(t)=\frac{\left\|\mathbf{c}^{\prime}(t) \times \mathbf{c}^{\prime \prime}(t)\right\|}{\left\|\mathbf{c}^{\prime}(t)\right\|^{3}}=\frac{\sqrt{\sin ^{2} t+\cos ^{2} t+1}}{\left(\sqrt{\cos ^{2} t+\sin ^{2} t+1}\right)^{3}}=\frac{\sqrt{2}}{\sqrt{2}^{3}}=\frac{1}{2}$.
Since $\kappa(t)=\frac{1}{2}$ for all t, C has constant curvature.
5. Let $C \subset \mathbb{R}^{2}$ be parametrized by $\mathbf{c}(t)=\left(\frac{3}{5} t+1,3-\frac{4}{5} t\right)$.
(a) Is C smooth? Why or why not?

Solution: Since $\mathbf{c}^{\prime}(t)=\left(\frac{3}{5},-\frac{4}{5}\right)$ is continuous and not equal to $\mathbf{0}, C$ is smooth.
(b) Show that \mathbf{c} is a parametrization with respect to arc length.

Solution: Since $\left\|\mathbf{c}^{\prime}(t)\right\|=\sqrt{\left(\frac{3}{5}\right)^{2}+\left(-\frac{4}{5}\right)^{2}}=1$ for all t, \mathbf{c} is a parametrization with respect to arc length.
(c) Find the length of C between $(1,3)$ and $(4,-1)$. (There are multiple ways to do this).

Solution: $(1,3)$ corresponds to $t=0$ and $(4,-1)$ corresponds to $t=5$. Since \mathbf{c} is a parametrization with respect to arc length, the length between these points is 5 .

Alternatively, using the arc length formula, we have $\int_{0}^{5}\left\|\mathbf{c}^{\prime}(t)\right\| d t=\int_{0}^{5} 1 d t=5$.
Alternatively, since C is a straight line, the arc length is simply the distance between the points $(1,3)$ and $(4,-1)$, which is $\sqrt{(1-4)^{2}+(3-(-1))^{2}}=5$.

