From handle diagrams for 4-manifolds to surgery diagrams for 3-manifolds

\[X^4 \quad \text{and} \quad M^3 \]

Link diagrams with each component labelled with an integer have both meanings 4-dimensionally (handle diagram) and 3-dimensionally (surgery diagram).

Q: How are these related?
A: \(\partial X = M \) as we'll see

Claim: If \(A, B \) are manifolds then \(\partial (A \times B) = \partial A \times B \cup A \times \partial B \).

Ex: \(I \times I \)

\[\partial (B^2 \times B^2) = \partial B^2 \times B^2 \cup B^2 \times \partial B^2 \quad \text{Note that with care} \]
\[= S^1 \times B^2 \cup B^2 \times S^1 \]

Claim: If \(M \) is a manifold with a decomposition \(M = A \cup B \) where \(A \) and \(B \) are both manifolds then
\[\partial M \cong (\partial A) - \text{gluing region} \cup (\partial B) - \text{gluing region} \]

Ex: has boundary
\[\partial (0\text{-handle}) - \text{overlap} \cup \partial (1\text{-handle}) - \text{overlap} \]
\[= S^2 - \text{attaching region} \cup \partial S^2 \times I \cup D^2 \times I - \text{attaching region} \]
\[\text{cylinder } U \cup \text{cylinder} \]
\[= \text{torus} \]

\[\text{EX: } -2 \]

\[\partial X \]

\[\text{has boundary: } \partial(0 \text{-handle}) \cup \partial(2 \text{-handle}) \]

\[= S^3 \cup S' \times B^2 \cup B^2 \times S^1 \]

\[= S^3 \cup \mathcal{K} \cup B^2 \times S^1 \]

So \(\partial X \) is certainly Dehn surgery. But with which framing?

The two orange regions will be identified. How?

\(\mathcal{L} \) is determined by where \(\ell \) goes, which is what is encoded by the framing. -2 framing \(\Rightarrow 1K(\mathcal{L}(\ell), K) = -2 \)

We keep track of the identification, but note that the orange regions are not part of the boundary.
What we need to understand to determine our surgery coefficient is where the meridian of the complementary purple torus goes under \(\phi \). But note that the meridian of the purple \(B^2 \times S^1 \) is isotopic to \(\partial \). Thus \(\ell_K(m, K) = -2 \) also. This is equivalent to performing \(-2\) surgery.

We just showed:

\[
\text{Prop: } J\left(\frac{2\text{-handle}}{\text{with framing } n} \cup B^4 \right) \cong S^3_{n} (K)
\]

Can similarly show that

\[
J\left(\bigcup_{i=1}^{\ell} \left(\frac{2\text{-handle}}{\text{with framing } n_i} \right) \cup B^4 \right) \cong S^3_{n_1, n_2, \ldots, n_{\ell}} (K_1, K_2, \ldots, K_\ell)
\]

Kirby moves \(\rightarrow \) surgery moves

Slam dunk:

\[
\text{k}_i \quad \text{K}_2 \leftarrow \text{unknot with framings:} \quad n \in \mathbb{Z}
\]

\[n = \frac{1}{r} \]

as 3-manifolds

note, this has no 4-D interpretation since coefficients won’t be integral here
This gives 2 different surgery descriptions of the same 3-manifold

Lens spaces

\[X = \left(\begin{array}{c}
\frac{q_1}{a_1} & \cdots & \frac{q_n}{a_n}
\end{array} \right) \text{ if } [a_1, a_2, \ldots, a_n] = \frac{p}{q} \]

then \(\exists X = L(p, q) \)

Claim: \(L(p, q) \) is \(-\frac{p}{q} \) surgery on the unknot \(S^3_{-\frac{p}{q}}(U) \)

Ex: \[X = \left(\begin{array}{c}
-3 \\
-2
\end{array} \right) \]

now thinking of this as a surgery diagram for the boundary

\[\left(\begin{array}{c}
-3 \\
-2
\end{array} \right) \rightarrow \left(\begin{array}{c}
-3 \left(\begin{array}{c}
- \frac{1}{2}
\end{array} \right)
\end{array} \right) = -\frac{5}{2} \]

\(\text{Slam-dunk} \)

\(S^3_{-\frac{5}{2}}(U) \)

no longer has any 4-D meaning

Other moves

Blow up: \[\begin{array}{c}
\text{adds } \pm 1K(K, K_i)^2 \text{ to framing of strands passing thru } K
\end{array} \]

Note: any number of strands is allowed, not just 3!

\[\begin{array}{c}
\begin{array}{c}
+1
\end{array}
\end{array} \begin{array}{c}
\text{"a full-twist on } K \text{ strands"}
\end{array} \]

Ex: \[\begin{array}{c}
\text{blow up } \frac{6}{1} - 1
\end{array} \]
blow-down: \[\begin{array}{c} \includegraphics[width=0.2\textwidth]{blow_down} \end{array} \] adds \(\mp 1K(K_i K_i)^2 \) to framing if we added \(\mp 1 \) twist box

\[\text{EX: } \begin{array}{c} \includegraphics[width=0.2\textwidth]{example} \end{array} \]

Rolfsen twist:

\[\begin{array}{c} \includegraphics[width=0.2\textwidth]{rolfsen_twist} \end{array} \] adds \(n(K(K_i, K))^2 \)

\[\text{EX: } \begin{array}{c} \includegraphics[width=0.2\textwidth]{example_rolfsen} \end{array} \]

Note: Rolfsen twists include blow-downs as a special case

Why do these moves?

1. reduce # of link components (if possible)
2. change coefficients which are fractions to be integral or even \(\pm 1 \)

depending on your goal often want either 1 or 2

Thm: Suppose \(L \) and \(L' \) are framed links (e.g., \(S^3(L') \) and \(S^3(L) \))
determine 3-manifolds as surgery. If \(S^3(L) \cong S^3(L') \), then orientation preserving

\(L \) and \(L' \) can be related by Rolfsen twists (and undoing them), adding or removing components framed by \(\infty \), and isotopy.

- Cool theorem in principle can principle could produce all surgery diagrams producing a given 3-manifold, but not very useful in practice.