1. Find the Taylor series of the following functions. Simplify your answers and be sure to include the disk of convergence.
(a) $g(z)=\frac{4}{3-z}$ centered at $z=1$.
(b) $h(z)=\cos (i z+1)$ centered at $z=i$.
2. Consider $f(z)=\tan z$.
(a) What is the largest circle within which the Maclaurin series for $f(z)=\tan z$ converges to $\tan z ?$
(b) Write the first two nonzero terms of the Maclaurin series.
3. Without explicitly calculating all of the derivatives, show that if $f(z)=z e^{z^{2}}$, then $f^{(2 n+1)}(0)=(2 n+1) 2 n(2 n-1)(2 n-2) \cdots(n+1)$ and $f^{(2 n)}(0)=0$ for all $n \geq 1$.
4. Find Laurent series expansions of the following functions centered at $z=0$. Simplify your answers and include the region on which each series converges.
(a) $f(z)=\frac{1}{z^{2}} \cosh z$
(b) $g(z)=\frac{4}{3 z^{3}+4 z^{2}}$ (Hint: There are two regions to consider here)
(c) $h(z)=\sin \left(\frac{1}{z^{3}}\right)$
5. For each function in the previous question, indicate whether $z=0$ is an essential singularity, a removable singularity, or a pole of order m (find m, in this case). Explain your reasoning.
6. Recall that $\log z(r>0,-\pi<\theta \leq \pi)$ has a singularity at $z=0$.
(a) Why can't we use Laurent's theorem to deduce that $\log z$ has a Laurent series expansion in some annular neighborhood centered at 0 ?
(b) Does there exist a singularity z_{0} such that $\log z$ has a Laurent series expansion in some annular neighborhood centered at z_{0} ? If so, around which singularities does $\log z$ have such an expansion? If not, explain why.
(c) Does there exist a point $z_{0} \in \mathbb{C}$ such that $\log z$ has a Taylor series expansion in a disk centered at z_{0} ? If so, around which points does $\log z$ have such an expansion? Carefully explain your reasoning.
