## Math 421 Homework 11

1. Use Laurent series to calculate the residue at $z=0$ of each of the following functions and use the residues to calculate the contour integral of each function over the positively-oriented unit circle.
(a) $f(z)=\frac{1}{z} \cosh z$
(b) $g(z)=\frac{4}{3 z^{3}+4 z^{2}}$
(c) $h(z)=\sin \left(\frac{1}{z^{3}}\right)$

You may use your Laurent series calculations from the last homework. (Beware, part (a) is a slightly different function from the last homework)
2. Let $f(z)=\frac{z+1}{z^{2}-2 z}$ and let $C$ be the positively-oriented circle $|z|=3$.
(a) Use Laurent series to calculate the residue of each isolated singular point enclosed by $C$.
(b) Use the Cauchy Residue Theorem to calculate $\int_{C} f(z) d z$.
(c) Calculate the residue at infinity of $f$ by considering the Laurent expansion of $\frac{1}{z^{2}} f\left(\frac{1}{z}\right)$.
(d) Show that the sum of the residues (including the residue at infinity) is 0 .
(e) Suppose $g(z)$ is any function with finitely many isolated singular points. Show that the sum of the residues of $g$ (including the residue at infinity) is 0 .
3. For each of the following functions, show that every singular point is a pole, without using Laurent series. Determine the order $m$ of each pole and find the corresponding residue (simplify your answers to $a+b i$ form). Thoroughly explain your reasoning.
(a) $f(z)=\frac{\sin z}{(2 z-\pi)^{3}}$
(b) $g(z)=\frac{z+3}{z^{2}\left(z^{2}+2\right)}$
4. Let $C$ be the positively oriented circle $|z|=3$ and let $f(z)=\frac{z^{3} e^{1 / z}}{1+z^{3}}$. Compute $\int_{C} f(z) d z$. Thoroughly explain your reasoning.
5. Let $P(z)=a_{n} z^{n}+\cdots+a_{1} z+a_{0}$ be a polynomial of degree $n$ (i.e. $a_{n} \neq 0$ ) and let $Q(z)=$ $b_{m} z^{m}+\cdots+b_{1} z+b_{0}$ be a polynomial of degree $m$ (i.e. $b_{m} \neq 0$ ), where $m \geq n+2$. Let $C$ be any positively-oriented simple closed curve enclosing all of the zeros of $Q$.
Show that $\int_{C} \frac{P(z)}{Q(z)} d z=0$. (Hint: compute the residue at infinity).

