
Math 425 (Sections 1 and 3) Homework 1 Solutions

1. Let f : R3 → R2 be a linear transformation given by the matrix A =

[
2 0 −1
1 1 0

]
.

(a) Compute the Jacobian Df(x, y, z).

Solution: Notice that since A =

[
2 0 −1
1 1 0

]xy
z

 =

[
2x− z
x+ y

]
, we can write f using func-

tion notation, namely f(x, y, z) = (2x− z, x+ y). Thus the Jacobian is

Df(x, y, z) =

[
2 0 −1
1 1 0

]
.

(b) Show that f (as defined above) is differentiable at any point (x0, y0, z0) ∈ R3 by using the
limit definition of differentiability.

Solution: Let x =

xy
z

 and x0 =

x0y0
z0

. Then

lim
x→x0

||f(x)− f(x0)−Df(x0)(x− x0)||
||x− x0||

= lim
x→x0

∣∣∣∣∣∣ [2x− z
x+ y

]
−
[
2x0 − z0
x0 + y0

]
−
[
2(x− x0)− (z − z0)
(x− x0) + (y − y0)

] ∣∣∣∣∣∣
||x− x0||

= lim
x→x0

∣∣∣∣∣∣ [0
0

] ∣∣∣∣∣∣
||x− x0||

= lim
x→x0

0 = 0. Thus f is differentiable at all points.

(c) A quicker way to show differentiability is to appeal to Theorem 9 in Section 2.3, which
roughly states that if the partial derivatives of f exists at a point and they are continuous
in a neighborhood of the point, then f is differentiable at the point. Apply this theorem
to show f is differentiable at all points (x0, y0, z0) ∈ R3.

Solution: Since the partial derivatives exist and are continous at all points in R3, f is
automatically differentiable at all points, by the theorem.

2. Let f(x, y) = − 3
√
xy. In class, we studied the graph of f and observed that

∂f

∂x
(0, 0) and

∂f

∂y
(0, 0) exist and that f is not differentiable at (0, 0). In this problem, you will concretely

show these facts.

(a) Show that
∂f

∂x
(0, 0) and

∂f

∂y
(0, 0) exist. (Hint: use the limit definition of partial derivatives)

Solution:
∂f

∂x
(0, 0) = lim

h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

0

h
= lim

h→0
0 = 0.

Similarly,
∂f

∂y
(0, 0) = lim

h→0

f(0, 0 + h)− f(0, 0)

h
= 0.
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(b) Show that f is not differentiable at (0, 0) by using the definition of differentiability.

Solution: To show f is not differentiable, we must show the following limit is not 0.

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)− ∂f
∂x (0, 0)(x− 0)− ∂f

∂y (0, 0)(y − 0)

||(x, y)− (0, 0)||
= lim

(x,y)→(0,0)

− 3
√
xy√

x2 + y2
.

As (x, y)→ (0, 0) along the line y = x, we have that
− 3
√
xy√

x2 + y2
=

x
2
3

√
2|x|

=
1

√
2|x

1
3 |
→ ∞.

Thus the limit does not exist and so f is not differentiable at (0, 0).

(c) Once again recall Theorem 9 in Section 2.3 of the textbook, which states that if
∂f

∂x
(0, 0)

and
∂f

∂y
(0, 0) exist and the partial derivatives are continuous in a neighborhood of (0, 0),

then f must be differentiable at (0, 0). What can you conclude about the partial deriva-
tives of f in light of this theorem and your findings in parts (a) and (b)?

Solution: Since the partial derivatives exist at (0, 0), but f is not differentiable at (0, 0),
the partial derivatives cannot be continuous in a neighborhood of the origin.

3. Give an example of a function f : R→ R with domain R that is C4 but not C5. Explain your
reasoning.

Solution: Let f(x) = x
9
2 . Then f (4)(x) = 945

16 x
1
2 , which is continuous on R, but f (5)(x) =

945
32 x

− 1
2 , which is not continuous at x = 0.

4. Let g(x, y) = sinx sin y.

(a) Graph g on https://www.wolframalpha.com. You’ll notice that g looks like an infinite
egg carton with infinitely many critical points. Based on the graph, what types of critical
points (maxima, minima, saddles) does g have?

Solution: Based on the graph obtained from wolframalpha.com shown below, g has local
maxima, minima, and saddle points.

(b) Find one critical point of each type that you found in part (a). Show your work.
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Solution: Setting the partial derivative ∂g
∂x = cosx sin y equal to zero, we have that either

x = (2n+1)π
2 or y = nπ, where n is any integer. Similarly, setting ∂g

∂y = sinx cos y equal to

zero and solving, we have either x = nπ or y = (2n+1)π
2 . Thus the critical points are of the

form (nπ,mπ) and ( (2n+1)π
2 , (2m+1)π

2 ), where n and m are any integers.

Consider the critical points (0, 0), (π2 ,
π
2 ), and (3π2 ,

π
2 ). The Hessian of g is

Hg(x, y) =

[
− sinx sin y cosx cos y
cosx cos y − sinx sin y

]
.

At (0, 0), we have

detHg(0, 0) =

[
0 1
1 0

]
= −1 < 0.

Thus f has a saddle point at (0, 0). At (π2 ,
π
2 ), we have that

detHg(
π

2
,
π

2
) =

[
−1 0
0 −1

]
= 1 > 0 and

∂2f

∂x2
(
π

2
,
π

2
) = −1 < 0.

Thus f has a local maximum at (π2 ,
π
2 ). Finally, at (3π2 ,

π
2 ), we have that

detHg(
3π

2
,
π

2
) =

[
1 0
0 1

]
= 1 > 0 and

∂2f

∂x2
(
3π

2
,
π

2
) = 1 > 0.

Thus f has a local minimum at (3π2 ,
π
2 ).

5. Let h(x, y) = x4−y2. Show that h has a degenerate critical point at (0, 0). In class, we discussed
how to determine the concavity in the x- and y-directions around a degenerate critical point.
What can you say about the concavity of h in the x- and y-directions around the point (0, 0)?
Explain your reasoning. Graph h(x, y) = x4−y2 on https://wolframalpha.com to graphically
check your work (this last part is for your benefit. You do not have to submit this graph).

Solution: Since ∂2h
∂x2

(x, 0) = 12x2 ≥ 0, h is concave up in the x-direction. Since ∂2h
∂y2

(0, y) =
−2 < 0, h is concave down in the y-direction.

6. Let f(x, y, z) = x2 + 1
3y

3 + z2 + 2yz. Find and classify the critical points of f . What is the
index of each critical point?

Solution:
∂f

∂x
= 2x,

∂f

∂y
= 2y2 + 2z,

∂f

∂z
= 2z + 2y. Setting these equal to 0, the first equa-

tion gives x = 0 and the others give y2 = −2z and z = −y. Combining these, we have
y2 = 2y ⇒ y(y − 2) = 0 ⇒ y = 0, 2. The corresponding z-values are 0,−2. Thus the critical
points are (0, 0, 0) and (0, 2,−2).

The Hessian is H(x, y, z) =

2 0 0
0 4y 2
0 2 2

.
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At the critical points, we have H(0, 0, 0) =

2 0 0
0 0 2
0 2 2

 and H(0, 2,−2) =

2 0 0
0 8 2
0 2 2

.

To classify and determine the index of the critical points, we can just find the eigenvalues of
the above matrices.

First, let’s find the eigenvalues of H(0, 0, 0):

det

2− λ 0 0
0 −λ 2
0 2 2− λ

 = (2 − λ)[−λ(2 − λ) − 4)] = 0 ⇒ λ = 2 or λ2 − 2λ − 4 = 0. Using

the quadratic formula to solve the second equation gives λ = 1 ±
√

5. Now since two of the
eigenvalues are positive and one is negative, H(0, 0, 0) is neither postive- nor negative-definite
and so f has a saddle point at (0, 0, 0). Moreover, (0, 0, 0) is an index 1 critical point.

Similarly, the eigenvalues of H(0, 2,−2) are 2 and 5 ±
√

13. Since these are all positive, the
Hessian is positive-definite and so f has a local minimum at (0, 0, 0). Moreover, (0, 2,−2) is an
index 0 critical point.

7. In class we saw that a sphere can be built out of one index 0 critical point and one index 1
critical point and a torus (which is the surface of a donut) can be built out of one index 0
critical point, two index 1 critical points, and one index 2 critical point, as shown below.

The genus of a surface R3 with no boundary is the number of “donut holes” in the surface. So,
the sphere is a surface of genus 0 and the torus a surface of genus 1. Let Σg be a surface of
genus g. Following the example of the torus we did in class, how many critical points can Σ2

(which is shown below) be built out of? What are the indices of these critical points?
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Let’s generalize. How many critical points can Σg be built out of? What are the indices of these
critical points? This is a conceptual problem and does not require the use of any functions.

Solution: Σ2 has one index 0 critical point, four index 1 critical points, and one index 2 critical
points, as shown below.

More generally, Σg has one index 0 critical point, 2g index 1 critical points, and one index 2
critical point.

5


