Math 425 (Sections 1 and 3) Homework 1 Solutions

1. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation given by the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 1 & 1 & 0\end{array}\right]$.
(a) Compute the Jacobian $\mathbf{D} f(x, y, z)$.

Solution: Notice that since $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}2 x-z \\ x+y\end{array}\right]$, we can write f using function notation, namely $f(x, y, z)=(2 x-z, x+y)$. Thus the Jacobian is
$\mathbf{D} f(x, y, z)=\left[\begin{array}{ccc}2 & 0 & -1 \\ 1 & 1 & 0\end{array}\right]$.
(b) Show that f (as defined above) is differentiable at any point $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ by using the limit definition of differentiability.

Solution: Let $\mathbf{x}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $\mathbf{x}_{0}=\left[\begin{array}{l}x_{0} \\ y_{0} \\ z_{0}\end{array}\right]$. Then
$\lim _{x \rightarrow x_{0}} \frac{\left\|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)-\mathbf{D} f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)\right\|}{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|}=\lim _{x \rightarrow x_{0}} \frac{\left\|\left[\begin{array}{c}2 x-z \\ x+y\end{array}\right]-\left[\begin{array}{c}2 x_{0}-z_{0} \\ x_{0}+y_{0}\end{array}\right]-\left[\begin{array}{c}2\left(x-x_{0}\right)-\left(z-z_{0}\right) \\ \left(x-x_{0}\right)+\left(y-y_{0}\right)\end{array}\right]\right\|}{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|}$
$=\lim _{x \rightarrow x_{0}} \frac{\left\|\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\|}{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|}=\lim _{x \rightarrow x_{0}} 0=0$. Thus f is differentiable at all points.
(c) A quicker way to show differentiability is to appeal to Theorem 9 in Section 2.3, which roughly states that if the partial derivatives of f exists at a point and they are continuous in a neighborhood of the point, then f is differentiable at the point. Apply this theorem to show f is differentiable at all points $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$.

Solution: Since the partial derivatives exist and are continous at all points in \mathbb{R}^{3}, f is automatically differentiable at all points, by the theorem.
2. Let $f(x, y)=-\sqrt[3]{x y}$. In class, we studied the graph of f and observed that $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ exist and that f is not differentiable at $(0,0)$. In this problem, you will concretely show these facts.
(a) Show that $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ exist. (Hint: use the limit definition of partial derivatives)

Solution: $\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=\lim _{h \rightarrow 0} 0=0$.
Similarly, $\frac{\partial f}{\partial y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=0$.
(b) Show that f is not differentiable at $(0,0)$ by using the definition of differentiability.

Solution: To show f is not differentiable, we must show the following limit is not 0 . $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-\frac{\partial f}{\partial x}(0,0)(x-0)-\frac{\partial f}{\partial y}(0,0)(y-0)}{\|(x, y)-(0,0)\|}=\lim _{(x, y) \rightarrow(0,0)} \frac{-\sqrt[3]{x y}}{\sqrt{x^{2}+y^{2}}}$.
As $(x, y) \rightarrow(0,0)$ along the line $y=x$, we have that $\frac{-\sqrt[3]{x y}}{\sqrt{x^{2}+y^{2}}}=\frac{x^{\frac{2}{3}}}{\sqrt{2}|x|}=\frac{1}{\sqrt{2}\left|x^{\frac{1}{3}}\right|} \rightarrow \infty$.
Thus the limit does not exist and so f is not differentiable at $(0,0)$.
(c) Once again recall Theorem 9 in Section 2.3 of the textbook, which states that if $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ exist and the partial derivatives are continuous in a neighborhood of $(0,0)$, then f must be differentiable at $(0,0)$. What can you conclude about the partial derivatives of f in light of this theorem and your findings in parts (a) and (b)?

Solution: Since the partial derivatives exist at $(0,0)$, but f is not differentiable at $(0,0)$, the partial derivatives cannot be continuous in a neighborhood of the origin.
3. Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with domain \mathbb{R} that is C^{4} but not C^{5}. Explain your reasoning.

Solution: Let $f(x)=x^{\frac{9}{2}}$. Then $f^{(4)}(x)=\frac{945}{16} x^{\frac{1}{2}}$, which is continuous on \mathbb{R}, but $f^{(5)}(x)=$ $\frac{945}{32} x^{-\frac{1}{2}}$, which is not continuous at $x=0$.
4. Let $g(x, y)=\sin x \sin y$.
(a) Graph g on https://www.wolframalpha.com. You'll notice that g looks like an infinite egg carton with infinitely many critical points. Based on the graph, what types of critical points (maxima, minima, saddles) does g have?

Solution: Based on the graph obtained from wolframalpha.com shown below, g has local maxima, minima, and saddle points.

(b) Find one critical point of each type that you found in part (a). Show your work.

Solution: Setting the partial derivative $\frac{\partial g}{\partial x}=\cos x \sin y$ equal to zero, we have that either $x=\frac{(2 n+1) \pi}{2}$ or $y=n \pi$, where n is any integer. Similarly, setting $\frac{\partial g}{\partial y}=\sin x \cos y$ equal to zero and solving, we have either $x=n \pi$ or $y=\frac{(2 n+1) \pi}{2}$. Thus the critical points are of the form $(n \pi, m \pi)$ and $\left(\frac{(2 n+1) \pi}{2}, \frac{(2 m+1) \pi}{2}\right)$, where n and m are any integers.
Consider the critical points $(0,0),\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$, and $\left(\frac{3 \pi}{2}, \frac{\pi}{2}\right)$. The Hessian of g is

$$
H g(x, y)=\left[\begin{array}{cc}
-\sin x \sin y & \cos x \cos y \\
\cos x \cos y & -\sin x \sin y
\end{array}\right] .
$$

At $(0,0)$, we have

$$
\operatorname{det} H g(0,0)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=-1<0
$$

Thus f has a saddle point at $(0,0)$. At $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$, we have that

$$
\operatorname{det} H g\left(\frac{\pi}{2}, \frac{\pi}{2}\right)=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=1>0 \text { and } \frac{\partial^{2} f}{\partial x^{2}}\left(\frac{\pi}{2}, \frac{\pi}{2}\right)=-1<0 .
$$

Thus f has a local maximum at $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$. Finally, at $\left(\frac{3 \pi}{2}, \frac{\pi}{2}\right)$, we have that

$$
\operatorname{det} H g\left(\frac{3 \pi}{2}, \frac{\pi}{2}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=1>0 \text { and } \frac{\partial^{2} f}{\partial x^{2}}\left(\frac{3 \pi}{2}, \frac{\pi}{2}\right)=1>0 .
$$

Thus f has a local minimum at $\left(\frac{3 \pi}{2}, \frac{\pi}{2}\right)$.
5. Let $h(x, y)=x^{4}-y^{2}$. Show that h has a degenerate critical point at $(0,0)$. In class, we discussed how to determine the concavity in the x - and y-directions around a degenerate critical point. What can you say about the concavity of h in the x - and y-directions around the point $(0,0)$? Explain your reasoning. Graph $h(x, y)=x^{4}-y^{2}$ on https://wolframalpha.com to graphically check your work (this last part is for your benefit. You do not have to submit this graph).
Solution: Since $\frac{\partial^{2} h}{\partial x^{2}}(x, 0)=12 x^{2} \geq 0, h$ is concave up in the x-direction. Since $\frac{\partial^{2} h}{\partial y^{2}}(0, y)=$ $-2<0, h$ is concave down in the y-direction.
6. Let $f(x, y, z)=x^{2}+\frac{1}{3} y^{3}+z^{2}+2 y z$. Find and classify the critical points of f. What is the index of each critical point?

Solution: $\frac{\partial f}{\partial x}=2 x, \frac{\partial f}{\partial y}=2 y^{2}+2 z, \frac{\partial f}{\partial z}=2 z+2 y$. Setting these equal to 0 , the first equation gives $x=0$ and the others give $y^{2}=-2 z$ and $z=-y$. Combining these, we have $y^{2}=2 y \Rightarrow y(y-2)=0 \Rightarrow y=0,2$. The corresponding z-values are $0,-2$. Thus the critical points are $(0,0,0)$ and $(0,2,-2)$.

The Hessian is $H(x, y, z)=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 4 y & 2 \\ 0 & 2 & 2\end{array}\right]$.

At the critical points, we have $H(0,0,0)=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 2\end{array}\right]$ and $H(0,2,-2)=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 8 & 2 \\ 0 & 2 & 2\end{array}\right]$.
To classify and determine the index of the critical points, we can just find the eigenvalues of the above matrices.

First, let's find the eigenvalues of $H(0,0,0)$:
$\left.\operatorname{det}\left[\begin{array}{ccc}2-\lambda & 0 & 0 \\ 0 & -\lambda & 2 \\ 0 & 2 & 2-\lambda\end{array}\right]=(2-\lambda)[-\lambda(2-\lambda)-4)\right]=0 \Rightarrow \lambda=2$ or $\lambda^{2}-2 \lambda-4=0$. Using
the quadratic formula to solve the second equation gives $\lambda=1 \pm \sqrt{5}$. Now since two of the eigenvalues are positive and one is negative, $H(0,0,0)$ is neither postive- nor negative-definite and so f has a saddle point at $(0,0,0)$. Moreover, $(0,0,0)$ is an index 1 critical point.

Similarly, the eigenvalues of $H(0,2,-2)$ are 2 and $5 \pm \sqrt{13}$. Since these are all positive, the Hessian is positive-definite and so f has a local minimum at $(0,0,0)$. Moreover, $(0,2,-2)$ is an index 0 critical point.
7. In class we saw that a sphere can be built out of one index 0 critical point and one index 1 critical point and a torus (which is the surface of a donut) can be built out of one index 0 critical point, two index 1 critical points, and one index 2 critical point, as shown below.

The genus of a surface \mathbb{R}^{3} with no boundary is the number of "donut holes" in the surface. So, the sphere is a surface of genus 0 and the torus a surface of genus 1 . Let Σ_{g} be a surface of genus g. Following the example of the torus we did in class, how many critical points can Σ_{2} (which is shown below) be built out of? What are the indices of these critical points?

Let's generalize. How many critical points can Σ_{g} be built out of? What are the indices of these critical points? This is a conceptual problem and does not require the use of any functions.
Solution: Σ_{2} has one index 0 critical point, four index 1 critical points, and one index 2 critical points, as shown below.

More generally, Σ_{g} has one index 0 critical point, $2 g$ index 1 critical points, and one index 2 critical point.

