1. Recall the concept of stereographic projection. Let S denote the unit sphere in \mathbb{R}^{3}, which is given by $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$. We saw in class that the extended complex plane $\mathbb{C} \cup\{\infty\}$ can be identified with S. The goal of this problem is to prove this fact by deriving a formula for this identification.
(a) Let $P=(a, b, c)$ be a point on S and let l be the straight line passing through P and $N=(0,0,1)$. Find parametric equations describing the line l (Hint: look back at your Calculus III notes).
(b) Show that l intersects the $x y$-plane in exactly one point P^{\prime}. What is P^{\prime} ? (Your answer should be in terms of a, b and c.)

(c) Let f be the function from $S-\{(0,0,1)\}$ to the $x y$-plane satisfying $f(P)=P^{\prime}$. Show that

$$
f(x, y, z)=\left(-\frac{x}{z-1},-\frac{y}{z-1}, 0\right)
$$

(d) We can similarly define a function from the $x y$-plane to $S-\{(0,0,1)\}$. This function is

$$
g(x, y, 0)=\left(\frac{2 x}{x^{2}+y^{2}+1}, \frac{2 y}{x^{2}+y^{2}+1}, \frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1}\right) .
$$

Show that f and g are inverses. That is, show that if (x, y, z) is in S, then $(g \circ f)(x, y, z)=$ (x, y, z) and if $(x, y, 0)$ is in the $x y$-plane, then $(f \circ g)(x, y, 0)=(x, y, 0)$. This implies that f is a one-to-one correspondence between $S-\{(0,0,1)\}$ and the $x y$-plane, which can be viewed as the complex plane \mathbb{C}.
(e) Now let

$$
\phi(x, y, z)= \begin{cases}f(x, y, z) & (x, y, z) \neq(0,0,1) \\ \infty & (x, y, z)=(0,0,1)\end{cases}
$$

This map is a one-to-one correspondence between the entire sphere S and the extended complex plane $\mathbb{C} \cup\{\infty\}$. It is called stereographic projection. (There is nothing to do for this part)

