
Math 425 (Sections 1 and 3) Homework 3 Solutions

1. Let C be the graph of y = ln(sec(x)).

(a) Parametrize C.

Solution: c(t) = (t, ln(sec(t)))

(b) Compute the length of C between (0, 0) and (π4 , ln(sec(π4 ))).

(Hint: Recall that

∫
secx dx = ln(secx+ tanx) + C)

Solution: These points correspond to the parameter values t = 0 and t = π
4 . Thus the

length is∫ π
4

0
||c′(t)|| dt =

∫ π
4

0
||(1, tan t)|| dt =

∫ π
4

0

√
1 + tan2 t dt =

∫ π
4

0
sec t dt = ln(1 +

√
2)

2. Let C be parametrized by c(t) = (cos 2t, cos t), where t ∈ R.

(a) Compute the tangent vector c′(t). Can you conclude anything about the smoothness of
C? Why or why not?

Solution: c′(t) = (−2 sin 2t,− sin t). Since c(0) = (0, 0), it is possible that C is not
smooth. However, we cannot say this for sure, since there might be a parametrization for
which the velocity vector is never 0.

(b) Use the fact that cos 2t = 2 cos2 t− 1 to find an equation for C involving x and y. Sketch
C in the xy-plane.

Solution: Since x = cos 2t = 2 cos2 t− 1 and y = cos t, we have that x = 2y2 − 1.

(c) Based on the equation you found in part (b), give a simpler parametrization of C.

Solution: Let y = t and x = 2t2 − 1. Thus c(t) = (2t2 − 1, t).

(d) What does the new parametrization tell you about the smoothness of C?

Solution: Since c′(t) = (4t, 1) is continuous and (4t, 1) 6= (0, 0) for all t, C is smooth.
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(e) Find the curvature of C at (−1, 0).

Solution: To do this, we can use either parametrization for C. I will use the one found in
part (c). At (−1, 0), we have t = 0. Viewing C as a curve in R3, c(t) = (2t2−1, t, 0). Since
c′(t) = (4t, 1, 0) and c′′(t) = (4, 0, 0) we have that c′(0) = (0, 1, 0) and c′′(0) = (4, 0, 0).
Thus

κ(0) =
||c′(0)× c′′(0)||
||c′(0)||3

= 4

(f) Find the equation of the osculating circle of C at (−1, 0). Re-sketch the graph of C along
with this osculating circle.

Solution: By definition, the osculating circle passes through (−1, 0), lies on the concave
side of C, has curvature equal to the curvature of C at (−1, 0), namely κ(0) = 4, and is

tangent to the tangent vector c′(0). Moreover, the radius of the circle is
1

κ(0)
=

1

4
. Since

c′(0) = (0, 1), the tangent vector of C at (−1, 0) is vertical. Thus the osculating circle is
tangent to the line x = −1. Since the radius is 1

4 , the circle has center (−3
4 , 0). Thus it

has equation (x+ 3
4)2 + y2 = 1

16 .

3. Let C be parametrized by c(t) = (et cos t, 2, et sin t), where t ∈ R.

(a) Notice that C is a curve in the y = 2 plane. Compute lim
t→−∞

c(t).

Solution: lim
t→−∞

c(t) = (0, 2, 0).

(b) Geometrically, C is a curve in the y = 2 plane that spirals around the point P that you
found in part (a). To see what C looks like, go to https://www.geogebra.org/3d?lang=

en and type in:
Curve(et cos(t), 2, et sin(t), t,−10, 10)

Here, you will see the curve for t-values between −10 and 10. You can change these
numbers to see more or less of the curve. You will notice that it seems like the curve
begins at P . But if you zoom towards P , you will see how the curve spirals around the
y-axis, getting closer and closer to P . There is nothing to hand in for this part.

(c) Show that the reparametrizion of C with respect to arc length starting at (1, 2, 0) in the

direction of increasing t is c(s) =
(

(
s√
2

+1) cos(ln(
s√
2

+1)), 2, (
s√
2

+1) sin(ln(
s√
2

+1))
)

.
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Solution: At (1, 2, 0), t = 0. The arc length function starting at t = 0 is

s(t) =

∫ t

0
||c′(u)|| du =

∫ t

0
||(eu cosu−eu sinu, 0, eu sinu+eu cosu)|| du =

∫ t

0

√
2eu du =

√
2(et−1)

Now solving s =
√

2(et − 1) for t, we have t = ln(
s√
2

+ 1). Plugging this into the original

parametrization, we have

c(s) =
(

(
s√
2

+ 1) cos(ln(
s√
2

+ 1)), 2, (
s√
2

+ 1) sin(ln(
s√
2

+ 1))
)

(d) Without appealing to the arc length formula, use the reparametrization to find the length

of C from (1, 2, 0) to
(

( 2√
2

+ 1) cos(ln( 2√
2

+ 1)), 2, ( 2√
2

+ 1) sin(ln( 2√
2

+ 1)
)

.

Solution: First note that these two points correspond to s = 0 and s = 2, respectively.
Since the parameter in c(s) represents the arc length from the starting point c(0) to c(s),
the arc length from s = 0 to s = 2 is simply 2.

4. Let C be the straight line parametrized by c(t) = (at+x0, bt+y0, ct+z0), where a, b, c, x0, y0, z0
are constants and either a 6= 0, b 6= 0 or c 6= 0. Show that C has constant curvature equal to 0.

Solution: c′(t) = (a, b, c) and c′′(t) = (0, 0, 0). Thus c′(t) × c′′(t) = (0, 0, 0) for all t and so

κ(t) =
||c′(0)× c′′(0)||
||c′(0)||3

=
0√

a2 + b2 + c2
= 0 for all t. Thus C has constant curvature equal to 0.

5. In class we saw that the function

r(u, v) = (sinu, (2 + cosu) cos v, (2 + cosu) sin v), 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π

parametrizes a torus T , which is depicted below.

(a) Calculate ||ru × rv||.

Solution:

ru = (cosu,− sinu cos v,− sinu sin v)

rv = (0,−(2 + cosu) sin v, (2 + cosu) cos v)

ru × rv = (−(2 + cosu) sinu cos2 v − (2 + cosu) sinu sin2 v,−(2 + cosu) cosu cos v,−(2 +
cosu) cosu sin v) = (−(2 + cosu) sinu, (2 + cosu) cosu cos v,−(2 + cosu) cosu sin v)

||ru × rv|| =
√

(2 + cosu)2 sin2 u+ (2 + cosu)2 cos2 u cos2 v + (2 + cosu)2 cos2 u sin2 v
=
√

(2 + cosu)2 sin2 u+ (2 + cosu)2 cos2 u =
√

(2 + cosu)2 = 2 + cosu.

3



(b) Show that T is smooth.

Solution: Since ||ru × rv|| = 2 + cosu ≥ 2 +−1 = 1 for all u we have that ||ru × rv|| 6= 0
for all (u, v). thus ru × rv 6= 0 for all u, v and so S is smooth.

(c) Find the equation of the tangent plane to T at (0, π4 ).

Solution: The tangent plane passes through r(0, π4 ) = (0, 3
√
2

2 , 3
√
2

2 ) and has normal vec-
tor ru(0, π4 )× rv(0,

π
4 ).

Since ru = (cosu,− sinu cos v,− sinu sin v) and rv = (0,−(2+cosu) sin v, (2+cosu) cos v),

we have ru(0, π4 ) = (1, 0, 0) and rv(0,
π
4 ) = (0,−3

√
2

2 , 3
√
2

2 ). Thus ru(0, π4 ) × rv(0,
π
4 ) =

(0,−3
√
2

2 ,−3
√
2

2 ).

Thus the equation of the tangent plane is 0(x − 0) − 3
√
2

2 (y − 3
√
2

2 ) − 3
√
2

2 (z − 3
√
2

2 ) = 0

which simplifies to 3
√

2y + 3
√

2z − 36 = 0

(d) Find the surface area of T .

Solution:

∫ 2π

0

∫ 2π

0
||ru × rv|| du dv =

∫ 2π

0

∫ 2π

0
(2 + cosu) du dv = 8π2.

(e) Earlier in the semester, we observed that the torus can be built out of one index 0 critical
point, two index 1 critical points, and one index 2 critical point. We will now show this
concretely. Let h : R3 → R be the height function defined by h(x, y, z) = z. When h is
restricted to T , it is of form h(u, v) = (2 + cosu) sin v. Find the critical points of h and
classify them using the Hessian. Then evaluate the parametrization r at the critical points
and plot them on the graph of T below.

Solution:
∂h

∂u
= − sinu sin v and

∂h

∂u
= (2 + cosu) cos v. Now

∂h

∂u
= 0 if u = 0, π or v = 0, π,

while
∂h

∂v
= 0 if v =

π

2
,
3π

2
(note that (2 + cosu) 6= 0). Thus there are four critical points:
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(0, π2 ), (π, π2 ), (0, 3π2 ) and (π, 3π2 ).

Now the Hessian of h is Hh(u, v) =

[
− cosu sin v − sinu cos v
− sinu cos v −(2 + cosu) sin v

]
.

At (0, π2 ), Hh(0, π2 ) =

[
−1 0
0 −3

]
has two negative eigenvalues and is thus negative-definite.

Thus h has a local max at (0, π2 ) (index 2).

At (π, π2 ), Hh(π, π2 ) =

[
1 0
0 −1

]
has one negative eigenvalue and is thus neither positive- nor

negative-definite. Thus h has a saddle point at (π, π2 ) (index 1).

At (0, 3π2 ), Hh(0, 3π2 ) =

[
1 0
0 3

]
has two positive eigenvalues and is thus positive-definite. Thus

h has a local min at (0, 3π2 ) (index 0).

At (π, 3π2 ), Hh(0, π2 ) =

[
−1 0
0 1

]
has one negative eigenvalue and is thus neither positive- nor

negative-definite. Thus h has a saddle point at (π, 3π2 ) (index 1).

Now, r(0, π2 ) = (0, 0, 3), r(π, π2 ) = (0, 0, 1), r(0, 3π2 ) = (0, 0,−3), r(π, 3π2 ) = (0, 0,−3). These
points can been seen to be the obvious max, min, and saddle points in the graph above.

6. The surfaces parametrized by

r(u, v) =
(

(1+
1

5
sin(mu) sin(nv)) cosu sin v, (1+

1

5
sin(mu) sin(nv)) sinu sin v, (1+

1

5
sin(mu) sin(nv)) cos v

)
where n,m are constants, 0 ≤ u ≤ 2π, and 0 ≤ v ≤ π have been used as models for tumors.

Type the following command into Geogebra’s 3D Calculator at https://www.geogebra.org/

3d?lang=en:

Surface
(

1 +
1

5
sin(4u) sin(5v)) cos(u) sin(v), (1 +

1

5
sin(4u) sin(5v)) sin(u) sin(v),

(1 +
1

5
sin(4u) sin(5v)) cos(v), u, 0, 2π, v, 0, π

)
to see the surface when m = 4 and n = 5. Be sure to include all parentheses. You can also try
to copy and paste it, but it might not work. There is nothing to hand in for this problem. It’s
just a neat parametrization I wanted to share with you.

7. (NOT TO BE TURNED IN) Here is some additional practice from the textbook:
Section 2.4 # 1, 3, 9, 11,
Section 4.2 # 1,3,17(d),19,
Section 7.3 # 3, 5, 7,
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Section 7.4 # 1, 3, 5, 17.
Feel free to do even more problems from the textbook for more practice.

6


