Math 425 (Sections 1 and 3) Homework 3 Solutions

1. Let C be the graph of y = In(sec(x)).

(a) Parametrize C.
Solution: c(t) = (¢, In(sec(t)))

(b) Compute the length of C' between (0,0) and (7, In(sec(%))).
(Hint: Recall that /sec:z: dzxr = In(secz + tanzx) + C)

Solution: These points correspond to the parameter values ¢ = 0 and ¢ = 7. Thus the
length is

/4 |c"()|| dt = /4 [|(1,tant)|| dt = /4 \/1+tan2tdt:/4 sectdt = In(1 + v/2)
0 0 0 0

2. Let C be parametrized by c(t) = (cos2t,cost), where t € R.

(a) Compute the tangent vector ¢’(t). Can you conclude anything about the smoothness of
C? Why or why not?

Solution: c/(t) = (—2sin2t, —sint). Since ¢(0) = (0,0), it is possible that C is not

smooth. However, we cannot say this for sure, since there might be a parametrization for
which the velocity vector is never 0.

(b) Use the fact that cos2t = 2cos?t — 1 to find an equation for C involving x and y. Sketch
C in the zy-plane.

Solution: Since z = cos2t = 2cos?t — 1 and y = cost, we have that z = 2y? — 1.

(c) Based on the equation you found in part (b), give a simpler parametrization of C.
Solution: Let y =t and z = 2t — 1. Thus c(t) = (2t> — 1,1).
(d) What does the new parametrization tell you about the smoothness of C?

Solution: Since ¢/(t) = (4t,1) is continuous and (4¢,1) # (0,0) for all ¢, C is smooth.
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Find the curvature of C' at (—1,0).

Solution: To do this, we can use either parametrization for C'. I will use the one found in
part (c). At (—1,0), we have t = 0. Viewing C as a curve in R?, c(t) = (2t2—1,,0). Since
c(t) = (4¢,1,0) and c’(t) = (4,0,0) we have that ¢’/(0) = (0,1,0) and ¢”(0) = (4,0,0).
Thus

_ [[€'(0) x c"(0)]]

"= eoE

Find the equation of the osculating circle of C' at (—1,0). Re-sketch the graph of C' along
with this osculating circle.

Solution: By definition, the osculating circle passes through (—1,0), lies on the concave
side of C, has curvature equal to the curvature of C' at (—1,0), namely x(0) = 4, and is

tangent to the tangent vector ¢’(0). Moreover, the radius of the circle is W =71 Since
K

¢/(0) = (0,1), the tangent vector of C at (—1,0) is vertical. Thus the osculating circle is
tangent to the line z = —1. Since the radius is %, the circle has center (—%, 0). Thus it
has equation (z + 3)% +y% = .

x=249-

3. Let C be parametrized by c(t) = (e’ cost, 2, e sint), where t € R.

(a)

Notice that C is a curve in the y = 2 plane. Compute . lim c(t).

——00

Solution: lim c(¢) = (0,2,0).

t——o00
Geometrically, C' is a curve in the y = 2 plane that spirals around the point P that you
found in part (a). To see what C looks like, go to https://www.geogebra.org/3d?lang=

en and type in:
Curve(e cos(t), 2, e’ sin(t), t, —10, 10)

Here, you will see the curve for t-values between —10 and 10. You can change these
numbers to see more or less of the curve. You will notice that it seems like the curve
begins at P. But if you zoom towards P, you will see how the curve spirals around the
y-axis, getting closer and closer to P. There is nothing to hand in for this part.

Show that the reparametrizion of C' with respect to arc length starting at (1,2,0) in the

direction of increasing t is c(s) = ((% +1) cos(ln(% +1)),2, (% +1) sin(ln(% + 1))) .
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Solution: At (1,2,0), t = 0. The arc length function starting at t = 0 is
t t t
s(t) = / || (u)|| du = / ||(e" cosu—e" sinwu, 0, " sinu+e* cosu)|| du = / V2e" du = \/i(et—l)
0 0 0

Now solving s = v/2(e! — 1) for ¢, we have t = ln(\% + 1). Plugging this into the original

parametrization, we have

S S S s
c(s)=((—=+1)cos(ln(—= +1)),2,(—= + 1) sin(In(—= + 1
(5) = (5 + D eostin(J5 + 1), 2, (75 + Dsinlin(-J -+ 1))
(d) Without appealing to the arc length formula, use the reparametrization to find the length
of C from (1,2,0) to ((\% +1) cos(ln(% +1)),2, (% +1) sin(ln(% + 1))

Solution: First note that these two points correspond to s = 0 and s = 2, respectively.
Since the parameter in c(s) represents the arc length from the starting point ¢(0) to c(s),
the arc length from s =0 to s = 2 is simply 2.

4. Let C be the straight line parametrized by c(t) = (at+xo, bt+yo, ct+ zo), where a, b, ¢, xo, yo, 20
are constants and either a £ 0,b # 0 or ¢ # 0. Show that C' has constant curvature equal to 0.

Solution: ¢/(t) = (a,b,¢) and ¢’ (t) = (0,0,0). Thus c'(t) x ¢”(t) = (0,0,0) for all ¢ and so
_ [I€0) x "0l _ 0
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= 0 for all . Thus C has constant curvature equal to 0.

5. In class we saw that the function
r(u,v) = (sinu, (2 + cosu) cosv, (2 + cosu)sinv), 0<u<2m, 0<v<27m

parametrizes a torus 7', which is depicted below.

(a) Calculate ||ry, X ry|.

Solution:

r, = (cosu, —sinu cosv, — sinusin v)
ry, = (0,—(2 4+ cosu) sinw, (2 + cosu) cosv)

ry X1, = (—(2 + cosu)sinucos? v — (2 + cosu) sin usin? v, —(2 + cosu) cos u cos v, —(2 +
cosu) cosusinv) = (—(2 + cosu) sinw, (2 + cosu) cos u cos v, —(2 + cos u) cos usin v)

[ty X ry|| = /(2 4 cosu)?sin u + (2 + cosu)2 cos2 ucos? v + (2 4 cosu)? cos? usin® v
= /(2 +cosu)?sinu + (2 + cosu)2 cos?u = /(2 + cosu)? = 2 + cos u.




(b) Show that 7" is smooth.

Solution: Since ||r, X ry|| =2+ cosu > 2+ —1 =1 for all v we have that ||r, X ry|| #0
for all (u,v). thus ry, X r, # 0 for all w,v and so S is smooth.

(c) Find the equation of the tangent plane to T" at (0, ).

Solution: The tangent plane passes through r(0, 7) = (0, 3v2 %i) and has normal vec-

tor r, (0, ) x ry(0, §).

Since r,, = (cosu, —sinu cos v, —sinu sinv) and r,, = (0, —(24cos u) sin v, (24+cos u) cos v),
we have r,(0,7) = (1,0,0) and r,(0,%) = ( ,—%5,%5). Thus r,(0,F) x ry(0,%) =

Thus the equation of the tangent plane is 0(z — 0) — %i(y — o

which simplifies to 3\/53/ +3v22-36=0

(d) Find the surface area of T

27 27 2T 2w
Solution: / / ||ty X || dudv = / / (2 + cosu) du dv = 872,
o Jo o Jo

(e) Earlier in the semester, we observed that the torus can be built out of one index 0 critical
point, two index 1 critical points, and one index 2 critical point. We will now show this
concretely. Let h : R? — R be the height function defined by h(z,y,z) = z. When h is
restricted to 7', it is of form h(u,v) = (2 4 cosu)sinv. Find the critical points of h and
classify them using the Hessian. Then evaluate the parametrization r at the critical points
and plot them on the graph of T" below.

h h
Solution: On = —sinusinv and Oh = (2 4 cosu) cosv. Now O =0ifu=0,morv=0,m,
w ou ou

oh 3
while 90 = 0ifv = g, 771- (note that (2 + cosu) # 0). Thus there are four critical points:
v



(0,%), (m, %), (0,7) and (m, ).

. . — cos u sin v —sinu cos v
Now the Hessian of h is Hh(u,v) = . e
—sinucosv —(2+ cosu)sinv

At (0,%), Hh(0,5) = [_01 _03} has two negative eigenvalues and is thus negative-definite.

Thus & has a local max at (0, %) (index 2).

1
At (7, %), Hh(rm, 5) = [0 _01] has one negative eigenvalue and is thus neither positive- nor

negative-definite. Thus h has a saddle point at (7, 5) (index 1).

At (0,28), Hh(0,2T) = (1) g} has two positive eigenvalues and is thus positive-definite. Thus
h has a local min at (0, 2F) (index 0).
A 3 th_'—loh L 1 dis th D iy

t (m, %), 0,%) = o 1| hasone negative eigenvalue and is thus neither positive- nor

negative-definite. Thus h has a saddle point at (m,2F) (index 1).

Now, r(0,%) = (0,0,3), r(m, %) = (0,0,1), r(0,%F) = (0,0, —3), r(m, 3*) = (0,0,—3). These
points can been seen to be the obvious max, min, and saddle points in the graph above.

. The surfaces parametrized by
1. . . 1. . L 1. .
r(u,v) = ((1—}—5 sin(mu) sin(nv)) cos u sin v, (1+g sin(mu) sin(nv)) sinu sin v, (1—|—5 sin(mu) sin(nv)) cos U)

where n, m are constants, 0 < u < 27, and 0 < v < 7 have been used as models for tumors.

Type the following command into Geogebra’s 3D Calculator at https://www.geogebra.org/
3d?7lang=en:

Surface(l + % sin(4u) sin(5v)) cos(u) sin(v), (1 + é sin(4u) sin(5v)) sin(u) sin(v),

1
(1+ £ sin(4u) sin(5v)) cos(v), u, 0, 2, v, 0, 77)

to see the surface when m = 4 and n = 5. Be sure to include all parentheses. You can also try
to copy and paste it, but it might not work. There is nothing to hand in for this problem. It’s
just a neat parametrization I wanted to share with you.

. (NOT TO BE TURNED IN) Here is some additional practice from the textbook:
Section 2.4 # 1, 3, 9, 11,

Section 4.2 # 1,3,17(d),19,

Section 7.3 # 3,5, 7,
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Section 7.4 # 1, 3, 5, 17.
Feel free to do even more problems from the textbook for more practice.



