1. Consider the multiple-valued function $f(z)=\log (z-1)$. Let $z-1=r e^{i \theta}$ and define $F(z)=$ $\log (z-1)=\ln r+i \theta$, where $-\pi<\theta \leq \pi$. Let $B=\{z \in \mathbb{C} \mid \operatorname{Re} z \leq-1$ and $\operatorname{Im} z=0\}$ and $U=\mathbb{C}-B$.
(a) Draw the complex plane and plot an arbitrary point z is in the first quadrant. Based on your diagram, plot $z-1$ and label r and θ, appropriately. Use your diagram to show that the line segment from z to 1 has length r and the angle formed by the line segment and the positive real axis is θ, as shown below.

Draw similar diagrams when z is in the second, third, and fourth quadrants.
(b) Using the diagrams from part (a), explain what happens to θ as z approaches B from above the real axis and below the real axis.
(c) Conclude that F is not continuous on B.
(d) Use the polar form of the Cauchy-Riemann equations to show that F is differentiable at all points in U. Conclude that F is analytic on U.
(e) Explain why B is a branch cut of f and $z=1$ is a branch point of f.
(f) (Optional) If you are artistically inclined, glue the branches of f together along their branch cuts and sketch the resulting Riemann surface. This is the graph of the imaginary part of f.
(Visit https://www.geogebra.org/m/nnjbzvt2 to see the graph of the imaginary part of $\log z$. The graph of f is the same, only shifted one unit along the real axis)
2. Consider the multiple-valued function $g(z)=\log (z)-\log (z-1)$. Let $z=r_{1} e^{i \theta_{1}}$ and $z-1=r_{2} e^{i \theta_{2}}$ and define $G(z)=\log (z)-\log (z-1)=\left(\ln r_{1}-\ln r_{2}\right)+i\left(\theta_{1}-\theta_{2}\right)$, where $-\pi<\theta_{1}, \theta_{2} \leq \pi$. Let $B=\{z \in \mathbb{C} \mid 0 \leq \operatorname{Re} z \leq 1$ and $\operatorname{Im} z=0\}$ and let $U=\mathbb{C}-B$.
(a) Let z be a point in the first quadrant. Using your answer to problem 1(a), show that $r_{1}, \theta_{1}, r_{2}, \theta_{2}$ are as in the diagram below.

Draw similar diagrams when z is in the second, third, and fourth quadrants.
(b) Using the diagrams from part (a), explain what happens to $\theta_{1}-\theta_{2}$ as:

- z approaches B from above the real axis and below the real axis;
- z approaches $B^{\prime}=\{z \in \mathbb{C} \mid \operatorname{Re} z>1$ and $\operatorname{Im} z=0\}$ from above and below;
- z approaches $B^{\prime \prime}=\{z \in \mathbb{C} \mid \operatorname{Re} z<0$ and $\operatorname{Im} z=0\}$ from above and below;
(c) Conclude that G is not continuous on B.
(d) As in problem 1, it turns out that G is analytic on U. Thus B is a branch cut of g. Moreover, it is easy to see that $z=1$ and $z=-1$ are branch points of g. There is nothing to do for this part.
(e) (Optional) Once again, if you are artistically inclined, glue the branches of g together along their branch cuts and sketch the resulting Riemann surface.

3. Let $h(z)=z^{\frac{1}{2}}$. Then h is multiple-valued and the negative real axis is a branch cut for h. The graph of the imaginary part of h is the Riemann surface depicted below.

To play around with this graph and with the graph of the real part of h, visit https://www. geogebra.org/m/FcN24PZ9. Note that there is nothing to hand in for this question.

