
Math 425 (Sections 1 and 3) Homework 4 Solutions

1. Determine whether the following vector fields are conservative. Explain your reasoning.

(a) F(x, y, z) = ex sin yi + zj + 2xk

Solution: Since curlF =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
ex sin y z 2x

∣∣∣∣∣∣ = (−1,−2,−ex cos y) 6= 0,

F is not conservative.

(b) F(x, y) = y cos(xy)i + x cos(xy)j

Solution: Let P (x, y) = y cos(xy) and Q(x, y) = x cos(xy). Then
∂P

∂y
= cos(xy) −

xy sin(xy) and
∂Q

∂x
= cos(xy) − xy sin(xy). Since

∂P

∂y
=

∂Q

∂x
and F is a C1 function

defined on all of R2, which is simply connected, F is conservative.

Alternatively, let f(x, y) = cos(xy). Then ∇f = F and so F is conservative.

2. A vector field is called incompressible if its divergence equals 0 at all points and it is called
irrotational if its curl equals to 0 at all points. Find an example of a nonconstant vector field
defined on all of R3 that is both incompressible and irrotational.

Solution: Let F(x, y, z) = (yz, xz, xy). Then divF = 0 and curlF = 0.

3. Let F(x, y) = P (x, y)i +Q(x, y)j = − y

x2 + y2
i +

x

x2 + y2
j.

(a) Use the definition of the line integral to compute

∫
C
F · ds, where C is the unit circle

oriented clockwise.

Solution: We can parametrize C by c(t) = (cos t,− sin t), 0 ≤ t ≤ 2π. Thus∫
C
F · ds =

∫ 2π

0
F(c(t)) · c′(t) dt =

∫ 2π

0
(sin t, cos t) · (− sin t,− cos t)dt =

∫ 2π

0
−1dt = −2π

.

(b) Using your calculation in part (a), explain why F is not conservative.

Solution: If F were conservative, then by the Fundamental Theorem of Line Integrals
(aka the Gradient Theorem), since C is closed, we would have obtained

∫
C F · ds = 0.

Since the integral was not 0, as we found in part (b), F is not conservative.



(c) Show that
∂Q

∂x
=
∂P

∂y
. Why does this not contradict the fact that F is not conservative?

Solution:
∂Q

∂x
=
−x2 + y2

(x2 + y2)2
and

∂P

∂y
=
−x2 + y2

(x2 + y2)2
. Thus

∂Q

∂x
=
∂P

∂y
. Since F is defined

only on {(x, y) ∈ R2 | (x, y) 6= (0, 0)}, which is not simply connected, we cannot conclude
that F is conservative.

4. The gravitational force field describes the force of attraction of an object of mass M on an
object of mass m. It is the vector field given by

F(x, y, z) =
(
− mMG

(x2 + y2 + z2)
3
2

x,− mMG

(x2 + y2 + z2)
3
2

y,− mMG

(x2 + y2 + z2)
3
2

z
)

where G is a gravitational constant.

(a) Show that f(x, y, z) =
mMG√

x2 + y2 + z2
is a potential function for F.

Solution: Since ∇f = F, f is a potential function for F.

(b) Let C be an arbitrary path from the point (3, 4, 12) to the point (0, 3, 4). Compute the
work done by the gravitational field in moving an astronaut along C.

Solution: By the fundamental theorem of line integrals∫
C
F · ds =

∫
C
∇f · ds = f(0, 3, 4)− f(3, 4, 12) = −mMG

5
+
mMG

13
= −8mMG
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(c) Calculate the flux of F through the unit sphere, with the positive (outward-pointing) ori-
entation. This is known as Gauss’s Law for Gravity.

Solution: First, parametrize the unit sphere S with r(u, v) = (sinu cos v, sinu sin v, cosu),
0 ≤ u ≤ π and 0 ≤ v ≤ 2π. Then ru × rv = (sin2 u cos v, sin2 u sin v, sinu cosu). Note that
these normal vectors points outward from S, since, for example, ru × rv(

π
2 , 0) = (1, 0, 0)

point outward from the point r(π2 , 0) = (1, 0, 0). Thus this parametrization agrees with
the positive/outward-pointing orientation of S. Next note that

F(r(u, v)) = (−mMG sinu cos v,−mMG sinu sin v,−mMG cosu)

Thus F(r(u, v)) · (ru × rv) = −mMG sinu and so the flux of F through S is∫∫
S

F· dS =

∫ 2π

0

∫ π

0
F(r(u, v))·(ru×rv) du dv =

∫ 2π

0

∫ π

0
−mMG sinu du dv = −4mMGπ

5. Compute the line integral

∫
C

(x+yz) dx+2x dy+xyz dz, where C consists of the line segments

from (1, 0, 1) to (2, 3, 1) and from (2, 3, 1) to (2, 5, 2).



Solution: Since C is built out of two curves, we need to calculate two line integrals. The
first line C1 can be parametrized by c1(t) = (1 − t)(1, 0, 1) + t(2, 3, 1) = (t + 1, 3t, 1), where
0 ≤ t ≤ 1. Notice that, with this parametrization, the orientation of C1 is correct (it goes
from (1, 0, 1) to (2, 3, 1) as t increases). Similarly, the second curve C2 can be parametrized by
c2(t) = (2, 2t+3, t+1), 0 ≤ t ≤ 1. Now, since c′1(t) = (1, 3, 0) and c′2(t) = (0, 2, 1), we have that∫
C1

(x+ yz) dx+ 2x dy + xyz dz

=

∫ 1

0
((t+ 1) + 3t(1))1 dt+

∫ 1

0
2(t+ 1)(3) dt+

∫ 1

0
(t+ 1)(3t)(1)(0) dt

=

∫ 1

0
10t+ 7 dt = 12∫

C2

(x+ yz) dx+ 2x dy + xyz dz

=

∫ 1

0
((2) + (2t+ 3)(t+ 1))(0) dt+

∫ 1

0
2(2)(2) dt+

∫ 1

0
(2)(2t+ 3)(t+ 1)(1) dt

=

∫ 1

0
4t2 + 10t+ 14 dt =
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Thus, we have that∫
C

(x+yz) dx+2x dy+xyz dz =

∫
C1

(x+yz) dx+2x dy+xyz dz+

∫
C2

(x+yz) dx+2x dy+xyz dz =
97

3

6. (a) Suppose f(x, y) = e
√
y is the density of the curve C given by c(t) = (2, t2), 0 ≤ t ≤ 1.

Find the mass of C.

Solution:

∫
C
f ds =

∫ 1

0
f(c(t))||c′(t)|| dt =

∫ 1

0
2tet dt = 2

(b) Suppose f(x, y, z) = x2z + y2z is the density of the surface S, which is the part of the
plane x+ y − z = −4 that lies inside of the cylinder x2 + y2 = 4. Find the mass of S.

Solution: First, we can parametrize S by r(u, v) = (u, v, u+ v+ 4) and let D = {(x, y) ∈
R3 | u2 + v2 ≤ 4}. Then ||ru × rv|| =

√
3. After we setup the integral, we will switch to

polar coordinates for easier evaluation.∫∫
S

f dS =

∫∫
D

f(r(u, v))||ru × rv|| dA =

∫∫
D

√
3(u2(u+ v − 4) + v2(u+ v + 4)) dA

=

∫∫
D

√
3(u2 + v2)(u+ v + 4) dA =

∫ 2π

0

∫ 2

0

√
3r2(r cos θ + r sin θ + 4)r dr dθ

=
√

3

∫ 2π

0

∫ 2

0
r4 cos θ + r4 sin θ + 4r3 dr dθ = 32π

√
3

7. Let S be the cylinder parametrized by r(u, v) = (cosu, sinu, v), where 0 ≤ u ≤ 2π and
0 ≤ v ≤ 1. Let F(x, y, z) = (y,−x, z).



(a) Is the orientation on S inward-pointing or outward-pointing? Explain your reasoning.

Solution: Since ru = (− sinu, cosu, 0) and rv = (0, 0, 1), the normal vector to S at
r(u, v) is ru × ru = (cosu, sinu, 0). When u = 0 and v = 0, for example, we have the
vector ru × rv(0, 0) = (1, 0, 0). This vector starts at r(0, 0) = (1, 0, 0) and points out from
the cylinder. Thus the vector field is outward-pointing.

(b) Find the flux of F through S.

Solution:∫∫
S
F · dS =

∫ 2π

0

∫ 1

0
F(r(u, v)) · (ru × rv) dv du

=

∫ 2π

0

∫ 1

0
(sinu,− cosu, v) · (cosu, sinu, 0) dv du =

∫ 2π

0

∫ 1

0
0 dv du = 0

(c) Show that F is tangent to S at all points.

Solution: Since ru × ru is normal to S and F · (ru × rv) = 0, we we computed in part
(b), we have that F is perpendicular to the normal vectors of S at all points. Thus F is
tangent to S at all points.

(d) Use part (c) to geometrically explain your answer in part (b).

Solution: The flux of a vector field through a surface is the measures the flow of the
vector field though the surface. Since F is tangent to S, the vector field does not flow
through S. Thus, the flux is 0.

8. Recall the following parametrization of a torus T :

r(u, v) = (sinu, (2 + cosu) cos v, (2 + cosu) sin v), 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π

(a) Calculate the Gaussian curvature K of T using the formula from class. There is no need
to redo the calculations you did on Homework 3. So for example, you can just write down
“||ru × rv|| = 2 + cosu, by Homework 3,” instead of showing the work all over again.

Solution: From Homework 3, we have that:

ru = (cosu,− sinu cos v,− sinu sin v)

rv = (0,−(2 + cosu) sin v, (2 + cosu) cos v)

ru × rv = (−(2 + cosu) sinu, (2 + cosu) cosu cos v,−(2 + cosu) cosu sin v)



||ru × rv|| = 2 + cosu.

Thus, we have that:

N =
ru × rv
||ru × rv||

= (− sinu,− cosu cos v,− cosu sin v).

ruu = (− sinu,− cosu cos v,− cosu sin v)

ruv = (0, sinu sin v,− sinu cos v)

rvv = (0,−(2 + cosu) cos v,−(2 + cosu) sin v)

Thus H(u, v) =

[
N · ruu N · ruv
N · rvu N · rvv

]
=

[
1 0
0 (2 + cosu) cosu

]
Finally, we have that the Gaussian curvature of T is

K =
detH

||ru × rv||2
=

(2 + cosu) cosu

(2 + cosu)2
=

cosu

2 + cosu

(b) Verify the Gauss-Bonnet Theorem for T . That is, show that
1

2π

∫∫
T

K dS = 2− 2g,

where g is the genus of T .

Solution: First note that, since T has only one hole, it has genus 1. Thus, 2 − 2g =

2− 2(1) = 0. Next, we compute the surface integral of K(u, v) =
cosu

2 + cosu
over T .∫∫

T

K dS =

∫ 2π

0

∫ 2π

0
K(u, v)||ru × rv|| du dv =

∫ 2π

0

∫ 2π

0

cosu

2 + cosu
(2 + cosu) du dv

=

∫ 2π

0

∫ 2π

0
cosu du dv = 0

Thus
1

2π

∫∫
T

K dS = 0 = 2− 2g.

9. (NOT TO BE TURNED IN) Here is some additional practice from the textbook:
Section 4.4 # 19, 21, 23, 25, 29, 33
Section 7.1 # 11, 15
Section 7.2 # 3, 9, 11, 17
Section 7.5 # 1, 3, 9, 11
Section 7.6 # 1, 11, 13
Feel free to do even more problems from the textbook for more practice.


