
Math 425 (Sections 1 and 3) Homework 5 Solutions

1. Let F(x, y, z) = yzi− xzj + xyk. Use Stokes’ Theorem to evaluate

∫∫
S

curlF · dS, where S is

the paraboloid z = 9− x2 − y2 that lies above the z = 5 plane, oriented upward.

Solution: The boundary of S is the intersection of the paraboloid and the plane, which is
given by 5 = 9 − x2 − y2, or x2 + y2 = 4. This is a circle of radius 2 in the z = 5 plane.
Since S has the upward orientation, ∂S has the counterclockwise orientation, when viewed
from above. Thus we can paramatrize ∂C by c(t) = (2 cos t, 2 sin t, 5), 0 ≤ t ≤ 2π. Now,
F(c(t)) = (10 sin t,−10 cos t, cos t sin t) and c′(t) = (−2 sin t, 2 cos t, 0).

Thus,

∫∫
S

curlF · dS =

∫
C

F · ds =

∫ 2π

0
F(c(t)) · c′(t) dt =

∫ 2π

0
−20 dt = −40π

2. Let F(x, y, z) = e−xi + exj + ezk. Use Stokes’ Theorem to compute

∫
C
F · ds, where C is the

boundary of the part of the plane 2x+y+2z = 2 in the first octant, oriented counterclockwise.

Solution: Let S be the surface given by the portion of the plane 2x + y + 2z = 2 in the first
octant, with the upward orientation. Then ∂S = C, as depicted below.

Since S is the graph of z = 1 − x − 1
2y, we can parametrize S by r(u, v) = (u, v, 1 − u − 1

2v),
where 0 ≤ u ≤ 2 and 0 ≤ v ≤ 2− 2u. Since ru × rv = (1, 12 , 1) points upward at all points, the
induced orientation on C is the correct counterclockwise orientation.

Now, curlF= (0, 0, ex) and so curlF(r(u, v)) = (0, 0, eu) and curlF(r(u, v)) · (ru × rv) = eu.
Thus∫
C

F · ds =

∫∫
S

curlF · dS =

∫∫
D

curlF(r(u, v)) · (ru × rv) dv du =

∫ 1

0

∫ 2−2u

0
eu dv du = 2e− 4



3. Let F(x, y, z) = x2yi+ 1
3x

3j+ xyk. Use Stokes’ Theorem to compute

∫
C
F · ds, where C is the

curve of intersection of the hyperbolic paraboloid z = y2 − x2 and the cylinder x2 + y2 = 1,
oriented clockwise, when viewed from above.

Solution: Let S be the portion of the paraboloid z = y2−x2 inside the cylinder x2+y2 = 1, with
the downward orientation. Then ∂S = C. Since S is the graph of the function z = y2 − x2, we
can parametrize S by r(u, v) = (u, v, v2−u2), where u2+v2 ≤ 1. However, a quick computation
shows that this parametrization does not agree with the downward pointing normal vectors.
Thus, we should switch u and v and use the parametrization r(u, v) = (v, u, u2 − v2), where
u2 + v2 ≤ 1. In this case, we have ru × rv = (−2v, 2u,−1), which points downward.

Now, curlF= (x,−y, 0) and so curlF(r(u, v)) = (v,−u, 0) and curlF(r(u, v)) · (ru × rv) =
−2v2 − 2u2.

Thus

∫
C

F· ds =

∫∫
S

curlF· dS =

∫∫
D

curlF(r(u, v))·(ru×rv) du dv =

∫ 2π

0

∫ 1

0
−2r3 dr dθ = −π

4. Let F(x, y) = xyi+ x2y3j. Use Green’s Theorem to compute

∫
C
F · ds, where C is the triangle

with vertices (0, 0), (1, 0), and (1, 2), oriented counterclockwise.

Solution: The region D bounded by C in the xy-plane, which is depicted below, is given by
D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 2x}

Thus by Green’s theorem

∫
C

F · ds =

∫∫
D

( ∂
∂x

(x2y3)− ∂

∂y
(xy)

)
dy dx =

∫ 1

0

∫ 2x

0
2xy3 − x dy dx =

2

3

5. Let F(x, y, z) = z2i+xyj+2xzk. Use the Divergence Theorem to compute

∫∫
S

F · dS, where S

is the surface of the tetrahedron bounded by the planes x = 0, y = 0, z = 0, and 2x+y+2z = 2.

Solution: Let W be the tetrahedron with boundary S. Then W = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤
y ≤ 2− 2x, 0 ≤ z ≤ 1− x− 1

2y}, which is depicted below.



Since divF= 3x, we have

∫∫
S

F · dS =

∫ 1

0

∫ 2−2x

0

∫ 1−x− 1
2
y

0
3x dz dy dx =

1

4

6. Let F = eyzi + 3yz2j− z3k
(a) Show that the divergence of F is 0.

Solution: divF=
∂

∂x
(eyz) +

∂

∂y
(3yz2) +

∂

∂z
(−z3) = 0 + 3z2 − 3z2 = 0

(b) Explain why you can deduce that there exists a vector field G such that F=curlG.

Solution: Since F is C1 on all of R3, which is simply connected, and divF = 0, there
exists a vector field G such that F=curlG.

(c) Let S be the unit sphere with the outward-pointing orientation. Use Stokes’ Theorem to
compute the flux of F through S.

Solution: Since S is closed and F =curlG, for some vector field G, we have that∫∫
S

F dS =

∫∫
S

curlG dS = 0

7. Let D be a simply connected region in R2 with boundary ∂D, which has the counterclockwise
orientation. Let P (x, y) = 0 and Q(x, y) = x.

(a) Use Green’s theorem to show that the area of a region D is given by

∫
∂D

x dy.

Solution: By Green’s theorem,

∫
∂D

x dy =

∫
∂D

0 dx + x dy =

∫∫
D

( ∂
∂x

(x) − ∂

∂y
(0)
)
dA =∫∫

D
1 dA, which is the area of D.



(b) Use the formula from part (a) to find the area of the region bounded by the ellipse
x2 + 4y2 = 4.

Solution: We can parametrize ∂D by c(t) = (2 cos t, sin t), 0 ≤ t ≤ 2π. Then c′(t) =
(−2 sin t, cos t). Now, the area is∫

∂D

x dy =

∫ 2π

0
2 cos t(cos t) dt =

∫ 1

0
2 cos2 t dt =

∫ 1

0
(1 + cos(2t)) dt = 2π

8. Let F(x, y, z) = xi−2yj+ zk and let S1 and S2 be the spheres centered at the origin with radii
1 and 2, respectively, oriented outward. Use the Divergence Theorem to show that the flux of
F through S1 equals the flux of F through S2.

Solution: Let W1 be the unit ball bounded by S1 and let W2 be the ball bounded by S2. Then
divF = 0 and so ∫∫

S1

F · dS =

∫∫∫
W1

divF dV =

∫∫∫
W1

0 dV = 0

∫∫
S2

F · dS =

∫∫∫
W2

divF dV =

∫∫∫
W2

0 dV = 0

Thus the flux of F through each sphere is 0.

9. (NOT TO BE TURNED IN) Here is some additional practice from the textbook:
Section 8.1 # 7, 9, 15
Section 8.2 # 7, 11, 13, 17
Section 8.4 # 5, 7, 9, 11, 24
Feel free to do even more problems from the textbook for more practice.


