1. Let $\mathbf{F}(x, y, z) = yz\mathbf{i} - xz\mathbf{j} + xy\mathbf{k}$. Use Stokes' Theorem to evaluate $\iint_{S} \text{curl}\mathbf{F} \cdot d\mathbf{S}$, where S is the paraboloid $z = 9 - x^2 - y^2$ that lies above the z = 5 plane, oriented upward.

Solution: The boundary of S is the intersection of the paraboloid and the plane, which is given by $5 = 9 - x^2 - y^2$, or $x^2 + y^2 = 4$. This is a circle of radius 2 in the z = 5 plane. Since S has the upward orientation, ∂S has the counterclockwise orientation, when viewed from above. Thus we can parametrize ∂C by $\mathbf{c}(t) = (2\cos t, 2\sin t, 5), 0 \le t \le 2\pi$. Now, $\mathbf{F}(\mathbf{c}(t)) = (10\sin t, -10\cos t, \cos t\sin t)$ and $\mathbf{c}'(t) = (-2\sin t, 2\cos t, 0)$.

Thus,
$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_{C} \mathbf{F} \cdot d\mathbf{s} = \int_{0}^{2\pi} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) \, dt = \int_{0}^{2\pi} -20 \, dt = -40\pi$$

2. Let $\mathbf{F}(x, y, z) = e^{-x}\mathbf{i} + e^{x}\mathbf{j} + e^{z}\mathbf{k}$. Use Stokes' Theorem to compute $\int_{C} \mathbf{F} \cdot d\mathbf{s}$, where C is the boundary of the part of the plane 2x + y + 2z = 2 in the first octant, oriented counterclockwise.

Solution: Let S be the surface given by the portion of the plane 2x + y + 2z = 2 in the first octant, with the upward orientation. Then $\partial S = C$, as depicted below.

Since S is the graph of $z = 1 - x - \frac{1}{2}y$, we can parametrize S by $\mathbf{r}(u, v) = (u, v, 1 - u - \frac{1}{2}v)$, where $0 \le u \le 2$ and $0 \le v \le 2 - 2u$. Since $\mathbf{r}_u \times \mathbf{r}_v = (1, \frac{1}{2}, 1)$ points upward at all points, the induced orientation on C is the correct counterclockwise orientation.

Now, curl $\mathbf{F} = (0, 0, e^x)$ and so curl $\mathbf{F}(\mathbf{r}(u, v)) = (0, 0, e^u)$ and curl $\mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_u \times \mathbf{r}_v) = e^u$. Thus

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \operatorname{curl} \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \, dv \, du = \int_{0}^{1} \int_{0}^{2-2u} e^{u} \, dv \, du = 2e - 4$$

3. Let $\mathbf{F}(x, y, z) = x^2 y \mathbf{i} + \frac{1}{3} x^3 \mathbf{j} + xy \mathbf{k}$. Use Stokes' Theorem to compute $\int_C \mathbf{F} \cdot d\mathbf{s}$, where C is the curve of intersection of the hyperbolic paraboloid $z = y^2 - x^2$ and the cylinder $x^2 + y^2 = 1$, oriented clockwise, when viewed from above.

Solution: Let S be the portion of the paraboloid $z = y^2 - x^2$ inside the cylinder $x^2 + y^2 = 1$, with the downward orientation. Then $\partial S = C$. Since S is the graph of the function $z = y^2 - x^2$, we can parametrize S by $\mathbf{r}(u, v) = (u, v, v^2 - u^2)$, where $u^2 + v^2 \leq 1$. However, a quick computation shows that this parametrization does not agree with the downward pointing normal vectors. Thus, we should switch u and v and use the parametrization $\mathbf{r}(u, v) = (v, u, u^2 - v^2)$, where $u^2 + v^2 \leq 1$. In this case, we have $\mathbf{r}_u \times \mathbf{r}_v = (-2v, 2u, -1)$, which points downward.

Now, curl $\mathbf{F} = (x, -y, 0)$ and so curl $\mathbf{F}(\mathbf{r}(u, v)) = (v, -u, 0)$ and curl $\mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_u \times \mathbf{r}_v) = -2v^2 - 2u^2$.

Thus
$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \operatorname{curl} \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \, du \, dv = \int_{0}^{2\pi} \int_{0}^{1} -2r^{3} \, dr \, d\theta = -\pi$$

4. Let $\mathbf{F}(x, y) = xy\mathbf{i} + x^2y^3\mathbf{j}$. Use Green's Theorem to compute $\int_C \mathbf{F} \cdot d\mathbf{s}$, where C is the triangle with vertices (0, 0), (1, 0), and (1, 2), oriented counterclockwise.

Solution: The region D bounded by C in the xy-plane, which is depicted below, is given by $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 2x\}$

Thus by Green's theorem

$$\int_{C} \mathbf{F} \cdot d\mathbf{s} = \iint_{D} \left(\frac{\partial}{\partial x} (x^2 y^3) - \frac{\partial}{\partial y} (xy) \right) dy \, dx = \int_{0}^{1} \int_{0}^{2x} 2xy^3 - x \, dy \, dx = \frac{2}{3}$$

5. Let $\mathbf{F}(x, y, z) = z^2 \mathbf{i} + xy \mathbf{j} + 2xz \mathbf{k}$. Use the Divergence Theorem to compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where S is the surface of the tetrahedron bounded by the planes x = 0, y = 0, z = 0, and 2x + y + 2z = 2.

Solution: Let W be the tetrahedron with boundary S. Then $W = \{(x, y, z) \mid 0 \le x \le 1, 0 \le y \le 2 - 2x, 0 \le z \le 1 - x - \frac{1}{2}y\}$, which is depicted below.

Since div $\mathbf{F} = 3x$, we have

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \int_{0}^{1} \int_{0}^{2-2x} \int_{0}^{1-x-\frac{1}{2}y} 3x \, dz \, dy \, dx = \frac{1}{4}$$

- 6. Let $\mathbf{F} = e^{yz}\mathbf{i} + 3yz^2\mathbf{j} z^3\mathbf{k}$
 - (a) Show that the divergence of \mathbf{F} is 0.

Solution: div
$$\mathbf{F} = \frac{\partial}{\partial x} (e^{yz}) + \frac{\partial}{\partial y} (3yz^2) + \frac{\partial}{\partial z} (-z^3) = 0 + 3z^2 - 3z^2 = 0$$

(b) Explain why you can deduce that there exists a vector field \mathbf{G} such that $\mathbf{F}=\operatorname{curl}\mathbf{G}$.

Solution: Since **F** is C^1 on all of \mathbb{R}^3 , which is simply connected, and div **F** = 0, there exists a vector field **G** such that **F**=curl**G**.

(c) Let S be the unit sphere with the outward-pointing orientation. Use Stokes' Theorem to compute the flux of \mathbf{F} through S.

Solution: Since S is closed and $\mathbf{F} = \operatorname{curl} \mathbf{G}$, for some vector field \mathbf{G} , we have that

$$\iint_{S} \mathbf{F} \, d\mathbf{S} = \iint_{S} \operatorname{curl} \mathbf{G} \, d\mathbf{S} = 0$$

- 7. Let D be a simply connected region in \mathbb{R}^2 with boundary ∂D , which has the counterclockwise orientation. Let P(x, y) = 0 and Q(x, y) = x.
 - (a) Use Green's theorem to show that the area of a region D is given by $\int_{\partial D} x \, dy$.

Solution: By Green's theorem,
$$\int_{\partial D} x \, dy = \int_{\partial D} 0 \, dx + x \, dy = \iint_D \left(\frac{\partial}{\partial x}(x) - \frac{\partial}{\partial y}(0)\right) dA = \iint_D 1 \, dA$$
, which is the area of D .

(b) Use the formula from part (a) to find the area of the region bounded by the ellipse $x^2 + 4y^2 = 4$.

Solution: We can parametrize ∂D by $\mathbf{c}(t) = (2\cos t, \sin t), \ 0 \le t \le 2\pi$. Then $\mathbf{c}'(t) = (-2\sin t, \cos t)$. Now, the area is

$$\int_{\partial D} x \, dy = \int_0^{2\pi} 2\cos t(\cos t) \, dt = \int_0^1 2\cos^2 t \, dt = \int_0^1 (1 + \cos(2t)) \, dt = 2\pi$$

8. Let $\mathbf{F}(x, y, z) = x\mathbf{i} - 2y\mathbf{j} + z\mathbf{k}$ and let S_1 and S_2 be the spheres centered at the origin with radii 1 and 2, respectively, oriented outward. Use the Divergence Theorem to show that the flux of \mathbf{F} through S_1 equals the flux of \mathbf{F} through S_2 .

Solution: Let W_1 be the unit ball bounded by S_1 and let W_2 be the ball bounded by S_2 . Then div $\mathbf{F} = 0$ and so

$$\iint_{S_1} \mathbf{F} \cdot d\mathbf{S} = \iiint_{W_1} \operatorname{div} \mathbf{F} \, dV = \iiint_{W_1} 0 \, dV = 0$$
$$\iint_{S_2} \mathbf{F} \cdot d\mathbf{S} = \iiint_{W_2} \operatorname{div} \mathbf{F} \, dV = \iiint_{W_2} 0 \, dV = 0$$

Thus the flux of \mathbf{F} through each sphere is 0.

9. (NOT TO BE TURNED IN) Here is some additional practice from the textbook: Section 8.1 # 7, 9, 15 Section 8.2 # 7, 11, 13, 17 Section 8.4 # 5, 7, 9, 11, 24 Feel free to do even more problems from the textbook for more practice.