1. Let $\mathbf{F}(x, y, z)=y z \mathbf{i}-x z \mathbf{j}+x y \mathbf{k}$. Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$, where S is the paraboloid $z=9-x^{2}-y^{2}$ that lies above the $z=5$ plane, oriented upward.

Solution: The boundary of S is the intersection of the paraboloid and the plane, which is given by $5=9-x^{2}-y^{2}$, or $x^{2}+y^{2}=4$. This is a circle of radius 2 in the $z=5$ plane. Since S has the upward orientation, ∂S has the counterclockwise orientation, when viewed from above. Thus we can paramatrize ∂C by $\mathbf{c}(t)=(2 \cos t, 2 \sin t, 5), 0 \leq t \leq 2 \pi$. Now, $\mathbf{F}(\mathbf{c}(t))=(10 \sin t,-10 \cos t, \cos t \sin t)$ and $\mathbf{c}^{\prime}(t)=(-2 \sin t, 2 \cos t, 0)$.

Thus, $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{C} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{2 \pi} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t) d t=\int_{0}^{2 \pi}-20 d t=-40 \pi$
2. Let $\mathbf{F}(x, y, z)=e^{-x} \mathbf{i}+e^{x} \mathbf{j}+e^{z} \mathbf{k}$. Use Stokes' Theorem to compute $\int_{C} \mathbf{F} \cdot d \mathbf{s}$, where C is the boundary of the part of the plane $2 x+y+2 z=2$ in the first octant, oriented counterclockwise.

Solution: Let S be the surface given by the portion of the plane $2 x+y+2 z=2$ in the first octant, with the upward orientation. Then $\partial S=C$, as depicted below.

In $x y$-plare:

Since S is the graph of $z=1-x-\frac{1}{2} y$, we can parametrize S by $\mathbf{r}(u, v)=\left(u, v, 1-u-\frac{1}{2} v\right)$, where $0 \leq u \leq 2$ and $0 \leq v \leq 2-2 u$. Since $\mathbf{r}_{u} \times \mathbf{r}_{v}=\left(1, \frac{1}{2}, 1\right)$ points upward at all points, the induced orientation on C is the correct counterclockwise orientation.
Now, $\operatorname{curlF}=\left(0,0, e^{x}\right)$ and so $\operatorname{curl} \mathbf{F}(\mathbf{r}(u, v))=\left(0,0, e^{u}\right)$ and $\operatorname{curl} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right)=e^{u}$. Thus

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \operatorname{curl} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d v d u=\int_{0}^{1} \int_{0}^{2-2 u} e^{u} d v d u=2 e-4
$$

3. Let $\mathbf{F}(x, y, z)=x^{2} y \mathbf{i}+\frac{1}{3} x^{3} \mathbf{j}+x y \mathbf{k}$. Use Stokes' Theorem to compute $\int_{C} \mathbf{F} \cdot d \mathbf{s}$, where C is the curve of intersection of the hyperbolic paraboloid $z=y^{2}-x^{2}$ and the cylinder $x^{2}+y^{2}=1$, oriented clockwise, when viewed from above.

Solution: Let S be the portion of the paraboloid $z=y^{2}-x^{2}$ inside the cylinder $x^{2}+y^{2}=1$, with the downward orientation. Then $\partial S=C$. Since S is the graph of the function $z=y^{2}-x^{2}$, we can parametrize S by $\mathbf{r}(u, v)=\left(u, v, v^{2}-u^{2}\right)$, where $u^{2}+v^{2} \leq 1$. However, a quick computation shows that this parametrization does not agree with the downward pointing normal vectors. Thus, we should switch u and v and use the parametrization $\mathbf{r}(u, v)=\left(v, u, u^{2}-v^{2}\right)$, where $u^{2}+v^{2} \leq 1$. In this case, we have $\mathbf{r}_{u} \times \mathbf{r}_{v}=(-2 v, 2 u,-1)$, which points downward.
Now, $\operatorname{curl} \mathbf{F}=(x,-y, 0)$ and so $\operatorname{curl} \mathbf{F}(\mathbf{r}(u, v))=(v,-u, 0)$ and $\operatorname{curl} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right)=$ $-2 v^{2}-2 u^{2}$.
Thus $\int_{C} \mathbf{F} \cdot d \mathbf{s}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \operatorname{curl} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v=\int_{0}^{2 \pi} \int_{0}^{1}-2 r^{3} d r d \theta=-\pi$
4. Let $\mathbf{F}(x, y)=x y \mathbf{i}+x^{2} y^{3} \mathbf{j}$. Use Green's Theorem to compute $\int_{C} \mathbf{F} \cdot d \mathbf{s}$, where C is the triangle with vertices $(0,0),(1,0)$, and $(1,2)$, oriented counterclockwise.

Solution: The region D bounded by C in the $x y$-plane, which is depicted below, is given by $D=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 2 x\}$

Thus by Green's theorem
$\int_{C} \mathbf{F} \cdot d \mathbf{s}=\iint_{D}\left(\frac{\partial}{\partial x}\left(x^{2} y^{3}\right)-\frac{\partial}{\partial y}(x y)\right) d y d x=\int_{0}^{1} \int_{0}^{2 x} 2 x y^{3}-x d y d x=\frac{2}{3}$
5. Let $\mathbf{F}(x, y, z)=z^{2} \mathbf{i}+x y \mathbf{j}+2 x z \mathbf{k}$. Use the Divergence Theorem to compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is the surface of the tetrahedron bounded by the planes $x=0, y=0, z=0$, and $2 x+y+2 z=2$.

Solution: Let W be the tetrahedron with boundary S. Then $W=\{(x, y, z) \mid 0 \leq x \leq 1,0 \leq$ $\left.y \leq 2-2 x, 0 \leq z \leq 1-x-\frac{1}{2} y\right\}$, which is depicted below.

Since $\operatorname{div} \mathbf{F}=3 x$, we have

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\int_{0}^{1} \int_{0}^{2-2 x} \int_{0}^{1-x-\frac{1}{2} y} 3 x d z d y d x=\frac{1}{4}
$$

6. Let $\mathbf{F}=e^{y z} \mathbf{i}+3 y z^{2} \mathbf{j}-z^{3} \mathbf{k}$
(a) Show that the divergence of \mathbf{F} is 0 .

Solution: $\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}\left(e^{y z}\right)+\frac{\partial}{\partial y}\left(3 y z^{2}\right)+\frac{\partial}{\partial z}\left(-z^{3}\right)=0+3 z^{2}-3 z^{2}=0$
(b) Explain why you can deduce that there exists a vector field \mathbf{G} such that $\mathbf{F}=$ curl \mathbf{G}.

Solution: Since \mathbf{F} is C^{1} on all of \mathbb{R}^{3}, which is simply connected, and $\operatorname{div} \mathbf{F}=0$, there exists a vector field \mathbf{G} such that $\mathbf{F}=\operatorname{curl} \mathbf{G}$.
(c) Let S be the unit sphere with the outward-pointing orientation. Use Stokes' Theorem to compute the flux of \mathbf{F} through S.

Solution: Since S is closed and $\mathbf{F}=\operatorname{curlG}$, for some vector field \mathbf{G}, we have that

$$
\iint_{S} \mathbf{F} d \mathbf{S}=\iint_{S} \operatorname{curl} \mathbf{G} d \mathbf{S}=0
$$

7. Let D be a simply connected region in \mathbb{R}^{2} with boundary ∂D, which has the counterclockwise orientation. Let $P(x, y)=0$ and $Q(x, y)=x$.
(a) Use Green's theorem to show that the area of a region D is given by $\int_{\partial D} x d y$.

Solution: By Green's theorem, $\int_{\partial D} x d y=\int_{\partial D} 0 d x+x d y=\iint_{D}\left(\frac{\partial}{\partial x}(x)-\frac{\partial}{\partial y}(0)\right) d A=$ $\iint_{D} 1 d A$, which is the area of D.
(b) Use the formula from part (a) to find the area of the region bounded by the ellipse $x^{2}+4 y^{2}=4$.

Solution: We can parametrize ∂D by $\mathbf{c}(t)=(2 \cos t, \sin t), 0 \leq t \leq 2 \pi$. Then $\mathbf{c}^{\prime}(t)=$ $(-2 \sin t, \cos t)$. Now, the area is

$$
\int_{\partial D} x d y=\int_{0}^{2 \pi} 2 \cos t(\cos t) d t=\int_{0}^{1} 2 \cos ^{2} t d t=\int_{0}^{1}(1+\cos (2 t)) d t=2 \pi
$$

8. Let $\mathbf{F}(x, y, z)=x \mathbf{i}-2 y \mathbf{j}+z \mathbf{k}$ and let S_{1} and S_{2} be the spheres centered at the origin with radii 1 and 2, respectively, oriented outward. Use the Divergence Theorem to show that the flux of \mathbf{F} through S_{1} equals the flux of \mathbf{F} through S_{2}.

Solution: Let W_{1} be the unit ball bounded by S_{1} and let W_{2} be the ball bounded by S_{2}. Then $\operatorname{div} \mathbf{F}=0$ and so

$$
\begin{aligned}
& \iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}=\iiint_{W_{1}} \operatorname{div} \mathbf{F} d V=\iiint_{W_{1}} 0 d V=0 \\
& \iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}=\iiint_{W_{2}} \operatorname{div} \mathbf{F} d V=\iiint_{W_{2}} 0 d V=0
\end{aligned}
$$

Thus the flux of \mathbf{F} through each sphere is 0 .
9. (NOT TO BE TURNED IN) Here is some additional practice from the textbook:

Section 8.1 \# 7, 9, 15
Section 8.2 \# 7, 11, 13, 17
Section 8.4 \# 5, 7, 9, 11, 24
Feel free to do even more problems from the textbook for more practice.

