
Math 425 (Sections 1 and 3) Homework 6 Solutions

1. Let F(x, y, z) = e−z
2
i + 2xyj + 4y2k. Find the work done by F in moving a particle along the

closed curve formed by the line segments from the origin to (0, 2, 0), from (0, 2, 0) to (1, 2, 1),
from (1, 2, 1) to (1, 0, 1), and from (1, 0, 1) to the origin.

Solution: Computing the work done would be complicated if we use line integrals. Instead,
we’ll apply Stokes’ Theorem. Let C be the closed curve and let C1, C2, C3, and C4 be the four
line segments making up C. Notice that C1 and C3 are parallel and C2 and C4 are parallel and
there plane that contains all four lines. Let S be that plane, as depicted below.

Notice that C4, which is the line segment from (1, 0, 1) to (0, 0, 0), lies in the xz-plane and is
given by z = x. Thus the plane S is also given by the equation z = x, where 0 ≤ x ≤ 1 and
0 ≤ y ≤ 2. We can thus parametrize S by r(u, v) = (u, v, u), where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2.
Now, ru×rv = (−1, 0, 1), which points upward from the plane. The induced orientation on C is
thus counterclockwise, when viewed from above. However, in the statement of the problem, C
is oriented clockwise, when viewed from above. Since changing the orientation negates surface
integrals of vector fields, we will simply negate our surface integral when we apply Stokes’
Theorem. Note that we could instead switch u and v in the parametrization to reverse the
orientation.

Now, curlF= (8y,−2ze−z
2
, 2y)⇒ curlF(r) · (ru × rv) = (8v,−2ue−u

2
, 2v) · (−1, 0, 1) = −6v.

Thus

∫
C
F · ds = −

∫∫
S

curlF · dS = −
∫ 1

0

∫ 2

0
−6v dv du = 12.

2. Recall, from Homework 4, that the gravitation force field of an object of mass M on an object
of mass m is given by

F(x, y, z) =
(
− mMG

(x2 + y2 + z2)
3
2

x,− mMG

(x2 + y2 + z2)
3
2

y,− mMG

(x2 + y2 + z2)
3
2

z
)

where G is a gravitational constant. In Homework 4, you showed that∫∫
S

F · dS = −4mMGπ

where S is the sphere circle, oriented outward.



(a) Let W denote the unit ball. Then ∂W = S is the unit sphere. Why can’t you apply the

Divergence Theorem with W to compute

∫∫
S

F · dS?

Solution: Since F is not defined at the origin, which is contained in W , we cannot apply
the Divergence Theorem.

(b) What would you get if you did try to apply the Divergence Theorem? Is it different from
the correct answer?

Solution: If we were to apply the Divergence Theorem without regard to the domain of
F, we would have that

divF =
∂

∂x

(
− mMG

(x2 + y2 + z2)
3
2

x
)

+
∂

∂y

(
− mMG

(x2 + y2 + z2)
3
2

y
)

+
∂

∂z

(
− mMG

(x2 + y2 + z2)
3
2

z
)

= 0

and so ∫∫
S

F · dS =

∫∫∫
W

divF dV =

∫∫∫
W

0 dV = 0

which is incorrect, since we know

∫∫
S

F · dS = −4mMGπ.

(c) Let S′ be any arbitrary closed surface enclosing S, oriented outward. Show that the flux
of F through S′ is also −4mMGπ.

Solution: Let W be the region enclosed by S and S′. Then ∂W = (−S) ∪ (S′), where
−S is the unit sphere oriented inward. Thus, by the Divergence Theorem∫∫

∂W

F · dS =

∫∫∫
W

divF dV =

∫∫∫
W

0 dV = 0

On the other hand,∫∫
∂W

F · dS =

∫∫
−S

F · dS +

∫∫
S′

F · dS = −
∫∫
S

F · dS +

∫∫
S′

F · dS

Thus

−
∫∫
S

F · dS +

∫∫
S′

F · dS = 0

or ∫∫
S′

F · dS =

∫∫
S

F · dS = −4mMGπ

3. Compute the exterior derivatives of the following differential forms on R3. Simplify your answers
so that they are of the form f1(x, y, z) dx dy + f2(x, y, z) dx dz + f1(x, y, z) dy dz.



(a) α = x dx+ xyz dy

Solution:

dα =
( ∂
∂x

(x) dx+
∂

∂y
(x) dy +

∂

∂z
(x) dz

)
dx+ (

∂

∂x
(xyz) dx+

∂

∂y
(xyz) dy +

∂

∂z
(xyz) dz

)
dy

= ( dx) dx+ (yz dx+ xz dy + xy dz) dy

= dx dx+ yz dx dy + xz dy dy + xy dz dy

= −x2 dx dy + yz dx dy + xy dz dy

= yz dx dy − xy dy dz

(b) β = dx dy + sin(xz) dx dz

Solution:

dβ =
( ∂
∂x

(1) dx+
∂

∂y
(1) dy +

∂

∂z
(1) dz

)
dx dy + (

∂

∂x
(sin(xz)) dx+

∂

∂y
(sin(xz)) dy

+
∂

∂z
(sin(xz)) dz

)
dx dz

= (0) dx dy + (z cos(xz) dx+ x cos(xz) dz) dx dz

= z cos(xz) dx dx dz + x cos(xz) dz dx dz

= 0

4. Let α = xy dx+ z dy − 3x2y dz and β = 2 dx dy − 3exy dx dz be differential forms on R3. Cal-
culate α ∧ β and simplify your answer so that it is of the form f1(x, y, z) dx dy dz.

Solution:

α ∧ β = (xy dx+ z dy − 3x2y dz) ∧ (2 dx dy − 3exy dx dz)

= 2xy dx dx dy + 2z dy dx dy − 6x2y dz dx dy − 3xyexy dx dx dz − 3zexy dy dx dz + 9x2yexy dz dx dz

= −6x2y dz dx dy − 3zexy dy dx dz

= (3zexy − 6x2y) dx dy dz

5. A 1-form α on R3 is called a contact 1-form if α ∧ dα 6= 0 at all points in R3. Show that
α = dz − xdy is a contact 1-form on R3.

Solution: Since dα =
(

∂
∂x(1) + ∂

∂y (1) + ∂
∂z (1)

)
dz−

(
∂
∂x(x) + ∂

∂y (x) + ∂
∂z (x)

)
dy = − dx dy, we

have that α ∧ dα = ( dz − x dy) ∧ (− dx dy) = − dz dx dy + x dy dx dy = − dz dx dy 6= 0. Thus
α is a contact structure.

6. Determine whether the 1-form α = y3z2 dx+3xy2z2 dy+2xy3z dz on R3 is exact. Explain your
reasoning. If it is exact, express it as df , where f is some 0-form.



Solution: Let F = (y3z2, 3xy2z2, 2xy3z). Then since F is defined on all of R3 (which is simply
connected), β is exact if and only if curlF= 0. Now

curlF =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
y3z2 3xy2z2 2xy3z

∣∣∣∣∣∣ = (0, 0, 0)

Thus β is exact. By integrating y3z2, 3xy2z2, and 2xy3z with respect to x, y, and z, respec-
tively, it is easy to see that if f(x, y, z) = xy3z2, then df = β.

Alternatively, since α is closed (check) and α is defined on R3, by the Poincaré Lemma, α is
exact.

7. Show that every k-form on Rk is closed. (Hint: Notice that a k-form on Rk is necessarily of
the form ν = f(x1, . . . , xk) dx1 · · · dxk.)

Solution:

dν =
k∑

i=1

( ∂f
∂xi

dxi

)
dx1 · · · dxk =

k∑
i=1

(−1)i−1
∂f

∂xi
dx1 · · · dxi dxi︸ ︷︷ ︸

=0

· · · dxk =
k∑

i=1

0 = 0

8. Let α = − y

x2 + y2
dx+

x

x2 + y2
dy be a 1-form on R2.

(a) Show that α is closed.

Solution: α is closed since

dα =
( ∂
∂x

(− y

x2 + y2
) dx+

∂

∂y
(− y

x2 + y2
) dy

)
dx+

( ∂
∂x

(
x

x2 + y2
) dx+

∂

∂y
(

x

x2 + y2
) dy

)
dy

=
∂

∂y
(− y

x2 + y2
) dy dx+

∂

∂x
(

x

x2 + y2
) dx dy

=
y2 − x2

(x2 + y2)2
dy dx+

y2 − x2

(x2 + y2)2
dx dy

= − y2 − x2

(x2 + y2)2
dx dy +

y2 − x2

(x2 + y2)2
dx dy = 0

(b) Show that α is not exact. (Hint: You already showed this on Homework 4. Explain why)

Solution: Let F(x, y) =
(
− y

x2 + y2
,

x

x2 + y2

)
. On Homework 3, we showed that F is

not conservative, which is equivalent to α being not exact.

(c) Why doesn’t this contradict the Poincaré Lemma?

Solution: The Poincaré Lemma states that if a differential form ω is closed and defined
on all of Rn, then ω is closed. In this case, α is closed, but not defined at (0, 0). Thus the



lemma is not applicable.

9. Let ω be a closed (k − 1)-form defined on a k-dimensional manifold M with boundary ∂M .

Use the generalized Stokes’ Theorem to compute

∫
∂M

ω.

Solution: Since ω is closed, dω = 0. Thus, by Stokes’ Theorem,∫
∂M

ω =

∫
M

dω =

∫
M

0 = 0

10. Let ω = P (x, y) dx+Q(x, y) dy be a 1-form on R2.

(a) Calculate and simplify dω.

Solution:

dω =
(∂P
∂x

dx+
∂P

∂y
dy
)
dx+

(∂Q
∂x

dx+
∂Q

∂y
dy
)
dy

=
∂P

∂x
dx dx+

∂P

∂y
dy dx+

∂Q

∂x
dx dy +

∂Q

∂y
dy dy

=
∂P

∂y
dy dx+

∂Q

∂x
dx dy

=
(∂Q
∂x
− ∂P

∂y

)
dx dy

(b) Let D be a region in R2 with oriented boundary ∂D. Use the Generalized Stokes’ Theorem
to prove Green’s Theorem:∫∫

D

(∂Q
∂x
− ∂P

∂y

)
dx dy =

∫
∂D

P dx+Qdy

Solution: ∫∫
D

(∂Q
∂x
− ∂P

∂y

)
dx dy =

∫
D

dω =

∫
∂D

ω =

∫
∂D

P dx+Qdy

11. (NOT TO BE TURNED IN) Here is some additional practice from the textbook:
Section 8.5 # 1, 3, 5, 6, 11, 13
Feel free to do even more problems from the textbook for more practice.


