Math 421 Homework 8

- 1. Suppose f is entire and $|f(z)| \ge 4$ for all $z \in \mathbb{C}$. Prove that f is constant on \mathbb{C} .
- 2. Let $f(z) = z + e^z$.
 - (a) What does the Maximum Modulus Principle tell you about f?
 - (b) Express f in the form f(z) = u(x, y) + iv(x, y).
 - (c) In class we showed that, as a consequence of the Maximum Modulus Principle, the only critical points of u are saddle points. Let's show this concretely with the example in this problem.
 - 1. Write down the statement of the second derivative test from Calc III (Math 233).
 - 2. Use the second derivative test to show that the only critical points of u are saddle points.
- 3. Let f(z) = u(x, y) + iv(x, y) and suppose $f'(z_0)$ exists. Recall that z_0 is a critical point of f if $f'(z_0) = 0$. We will show that $z_0 = x_0 + iy_0$ is a critical point of f if and only if (x_0, y_0) is a critical point of u if and only if (x_0, y_0) is a critical point of v.
 - (a) Show that if (x_0, y_0) is a critical point of u if and only if (x_0, y_0) is a critical point of v.
 - (b) Show that if (x_0, y_0) is a critical point of u, then z_0 is a critical point of f.
 - (c) Show that if z_0 is a critical point of f, then (x_0, y_0) is a critical point of both u and v.
- 4. Use contour integrals to evaluate the following integrals.

(a)
$$\int_{0}^{2\pi} \frac{1}{5+4\sin t} dt$$

(b) P.V. $\int_{-\infty}^{\infty} \frac{1}{x^2+2x+2} dx$