
Pre-Class Problems

To get the most out of class, you will be assigned problems from the list below to prepare you
for the upcoming class material. These assignments are to be completed before coming to class.
These assignments will either: (1) review pre-requisite concepts from calculus and linear algebra or
(2) review material from a previous lecture. This bank of problems will be updated regularly and
solutions will be added after each class.

Visit the class website https://people.umass.edu/jsimone/fall2019math425.html for more details,
including pre-class assignment due dates.

1. (Calc III Review) Let f(x, y, z) = x2e2z−y. Compute
∂f

∂y
,
∂2f

∂x∂y
, and

∂2f

∂z2
(1, 2, 1).

Solution:
∂f

∂y
= −x2e2z−y, ∂2f

∂x∂y
= −2xe2z−y,

∂2f

∂z2
(1, 2, 1) = 4

2. Find the linearization L of:

(a) (Calc I Review) f(x) = sinx+ 1 at x = π.

Solution: L(x) = f(π) + f ′(π)(x− π) = 1− 1(x− π) = 1 + π − x

(b) (Calc III Review) g(x, y) = x2 + y2 + 1 at (x, y) = (1, 1)

Solution: L(x, y) = g(1, 1) + ∂g
∂x(1, 1)(x− 1) + ∂g

∂y (1, 1)(y − 1) = 2x+ 2y − 1

3. (Calc III Review) Compute the following limits, if they exist.

(a) lim
(x,y)→(0,0)

exy

x+ 1

Solution: Since f(x, y) = exy

x+1 is continuous at (0, 0), lim
(x,y)→(0,0)

exy

x+ 1
= 1

(b) lim
(x,y)→(0,0)

(x− y)2

x2 + y2

Solution: Along the line x = 0, when y 6= 0, (x−y)2
x2+y2

= y2

y2
= 1 and so as (x, y) → (0, 0)

along x = 0, (x−y)2
x2+y2

→ 1. On the other hand, along the line x = y, when (x, y) 6= (0, 0),
(x−y)2
x2+y2

= 0 and so as (x, y) → (0, 0) along x = y, (x−y)2
x2+y2

→ 0. Thus the limit does not
exist.

4. (Calc III Review) Let f(x, y) = 3x2 + 2 ln(xy), x = 3s + 2t, y = set. Use the chain rule to

compute
∂f

∂s
.

Solution:
∂f

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
= (6x+

2

x
)(3) + (

2

y
)(et) = 18(3s+ 2t) +

6

3s+ 2t
+

2

s

5. (Calc III Review) Find and classify the critical points of f(x, y) = 4 + x3 + y3 − 3xy.
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Solution: fx = 3x2 − 3y and fy = 3y2 − 3x. Setting these both to zero and solving,
we find the critical points (0, 0) and (1, 1). Now we can classify them by using the sec-
ond derivative test from Calc III. First note that fxx = 6x, fyy = 6y, and fxy = −3.
Since fxx(0, 0)fyy(0, 0) − (fxy(0, 0))2 = −9 < 0, f has a saddle point at (0, 0) and since
fxx(1, 1)fyy(1, 1) − (fxy(1, 1))2 = 27 > 0 and fxx(1, 1) = 6 > 0, f has a local minimum at
(1, 1).

6. (Linear Algebra Review)

(a) Find the eigenvalues of A =

[
1 2
0 −2

]
.

Solution: Since A is triangular, the eigenvalues are 1 and −2.

(b) Fill in the blank: An n× n matrix M has an eigenvalue of 0 if and only if detM = .

Solution: 0

(c) True/False : A symmetric n× n matrix M (i.e. MT = M) has n real eigenvalues.

Solution: True

7. (Review of Previous Lecture)

(a) Write down the general second derivative test from last lecture.

Solution: Let f be a C2 function with nondegenerate critical point x0. If Hf(x0) is
positive-definite, then f has a local minimum at x0; if Hf(x0) is negative-definite, then f
has a local maximum at x0; otherwise, f has a saddle point at x0.

(b) Show that (0, 0, 0) is a critical point of f(x, y, z) = x2 + y2 + z2 + yz. Use the second
derivative test to show that it is a local minimum.

Solution: ∂f
∂x = 2x, ∂f

∂y = 2y + z, and ∂f
∂z = 2z + y. Since ∂f

∂x (0, 0, 0) = ∂f
∂y (0, 0, 0) =

∂f
∂z (0, 0, 0) = 0, (0, 0, 0) is a critical point. Computing the second partial derivatives, we

have that the Hessian at (0, 0, 0) is Hf(0, 0, 0) =

2 0 0
0 2 1
0 1 2

. Since det[2] = 2 > 0,

det

[
2 0
0 2

]
= 4 > 0, and detHf(0, 0, 0) = 6 > 0, the Hessian is positive-definite. Thus

(0, 0, 0) is a local minimum.

(c) Show that (0, 0) is a degenerate critical point of f(x, y) = x7 − y4.
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Solution: First, since ∂f
∂x (0, 0) = ∂f

∂y = 0, (0, 0) is a critical point. The Hessian is

Hf(x, y) =

[
42x5 0

0 −12y2

]
. Thus detHf(0, 0) = 0 and so (0, 0) is degenerate.

8. (Calculus I Review) State the Extreme Value Theorem for a function of one variable. Find the
absolute maximum and minimum values of f(x) = sin(2x) on [0, π2 ].

Solution: The EVT states: If f is continous on [a, b], then f attains an absolute maximum and
absolute minimum on [a, b]. To find the extrema, we simply find the critical points of f in [0, π2 ],
plug them and the endpoints into f , and compare the function values. Since f ′(x) = 2 cos(2x),
the only critical point in [0, π2 ] is x = π

4 . Now, f(0) = 0, f(π4 ) = 1, and f(π2 ) = 0. Thus the
absolute maximum is 1 and the absolute minimum is 0.

9. (Calculus III Review) Use Lagrange multipliers to find the extreme values of f(x, y) = xy
subject to the constraint x2 + y2 = 1.

Solution: Let g(x, y) = x2 + y2. Then ∇f(x, y) = 〈y, x〉 and ∇g(x, y) = 〈2x, 2y〉. We must
solve the system: y = λ2x, x = λ2y, x2 + y2 = 1. First note that if λ = 0, then x = y = 0,
which contradicts the third equation. Similary, if x = 0, then since λ 6= 0, the first equation
would force y = 0, once again contradicting the third equation. Thus λ, x, y 6= 0. By solving
the first two equations for lambda, setting them equal to each other, and cross multiplying, we
obtain x2 = y2. Plugging this into the third equation yields 2x2 = 1, or x = ± 1√

2
. Thus the

critical points are ( 1√
2
, 1√

2
), (− 1√

2
, 1√

2
), ( 1√

2
,− 1√

2
), and (− 1√

2
,− 1√

2
). Plugging these into f , we

see that the absolute maximum is 1
2 and the absolute minimum is −1

2

10. (Calculus III Review) Evaluate the following double integrals.

(a)

∫ 1

0

∫ 1

−1
x2y dx dy

Solution:

∫ 1

0

∫ 1

−1
x2y dx dy =

∫ 1

0

(1

3
x3y
∣∣∣1
−1

)
dy =

∫ 1

0

2

3
y dy =

1

3

(b)

∫ 1

0

∫ ex

1
(x+ y) dy dx

Solution:

∫ 1

0

∫ ex

1
(x+ y) dy dx =

∫ 1

0

(
xy +

1

2
y2
∣∣∣ex
1

)
dx =

∫ 1

0
xex +

1

2
e2x − x− 1

2
dx

= xex − ex +
1

4
e2x − 1

2
x2 − 1

2
x
∣∣∣1
0

=
1

4
e2 − 1

4

11. (Review of Previous Lecture) Compute

∫ 1

0

∫ 2

0

∫ 3

0
xyz2 dz dy dx.

Solution:

∫ 1

0

∫ 2

0

∫ 3

0
xyz2 dz dy dx =

∫ 1

0

∫ 2

0
9xy dy dx =

∫ 1

0
18x dx = 9
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12. (Linear Algebra Review): Let A =

[
1 2
1 −4

]
(a) Sketch the parallelogram formed by the columns of A.

Solution:

(b) Without using geometry, find the area of that parallelogram. (Hint: It is related to the
determinant of A.)

Solution: The area is | detA| = 6.

(c) Let T : R2 → R2 be the linear transformation given by the matrix A and let
D = {(x, y) ∈ R2 | − 1 ≤ x ≤ 1,−1 ≤ y ≤ 1}. What is the area of T (D) (i.e. the image
of D)? (Hint: It is related to the determinant of A and the area of D).

Solution: Area(T (D)) = |detA|Area(D) = 6(4) = 24.

13. (Linear Algebra Review) Recall that a function T : Rn → Rm is one-to-one if for each b ∈ Rm,
there is at most one x ∈ Rn such that T (x) = b. Let T be a linear transformation given by
a matrix A. If T is one-to-one, then what can be said about the columns of A? What can be
said about the determinant of A?

Solution: The columns of A are linearly independent and detA 6= 0.

14. (Review of Previous Lecture) Write down the change of variables formulas for double integrals.
Use the change of variables u = 2x+y, v = x−3y to rewrite the integral

∫∫
(2x+y)ex−3y dx dy

in terms of u and v. Don’t forget about the determinant of the Jacobian.

Solution: To figure out the Jacobian, we need to write x and y in terms of u and v.

u = 2x+ y ⇒ y = u− 2x⇒ v = x− 3y = x− 3u+ 6x⇒ x = 3
7u+ 1

7v ⇒ y = u− 2x = 1
7u−

2
7v.

Thus the change of variables transformation is T (u, v) = (37u+ 1
7v,

1
7u−

2
7v) and so we have

| detDT (u, v)| =
∣∣∣det

[
3
7

1
7

1
7 −2

7

] ∣∣∣ =
1

7

Thus we have

∫∫
(2x+ y)ex−3y dx dy =

∫∫
1

7
uev du dv.

15. (Calculus III Review)
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(a) Find the vector equation of the line in R3 passing through the point (1, 2, 3) and parallel
to the vector 〈−1, 3, 0〉.

Solution: c(t) = 〈1, 2, 3〉+ t〈−1, 3, 0〉 = 〈1− t, 2 + 3t, 3〉

(b) Sketch the curve in R2 given by c(t) = (cos t, sin t), where 0 ≤ t ≤ 2π.

Solution: Since x = cos t and y = sin t, we have that x2 + y2 = 1 and so the curve is
simply the unit circle.

16. (Calculus III Review) Recall the arc length formula: The length of a curve parametrized by
c(t), where a ≤ t ≤ b is

L =

∫ b

a
||c′(t)||dt

Find the length of the curve parametrized by c(t) = (r cos t, r sin t), where 0 ≤ t ≤ 2π.

Solution: Since c′(t) = (−r sin t, r cos t), we have that ||c′(t)|| = r. Thus L =

∫ 2π

0
r dt = 2πr.

17. (Calculus III Review) Compute the cross product a×b, where a = 〈2,−1, 3〉 and b = 〈−2, 3, 5〉.
How is it related to the original two vectors?

Solution:

a×b =

∣∣∣∣∣∣
i j k
2 −1 3
−2 3 5

∣∣∣∣∣∣ =

∣∣∣∣−1 3
3 5

∣∣∣∣ i− ∣∣∣∣ 2 3
−2 5

∣∣∣∣ j+

∣∣∣∣ 2 −1
−2 3

∣∣∣∣k = −14i− 16j+ 4k = 〈−14,−16, 4〉.

a× b is perpendicular to both a and b.

18. (Calculus III Review) Find the equation of the plane passing through (1, 2, 3) with normal
vector 〈−1, 4, 2〉.

Solution: −1(x− 1) + 4(y − 2) + 2(z − 3) = 0 or −x+ 4y + 2z − 13 = 0.

19. (Calculus III Review) Find a vector normal to the plane passing through the points A(1, 0, 1),
B(2,−1, 1), and C(0, 0, 2).

Solution: First, we find two vectors parallel to the plane:
−−→
AB = 〈1,−1, 0〉 and

−→
AC = 〈−1, 0, 1〉.

Now, to find a normal vector, we can simply compute the cross product of these two vectors:−−→
AB×

−→
AC = 〈−1,−1,−1〉. Note that any multiple of this vector is a normal vector to the plane.
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20. (Calculus III Review) Use the cross product to find the area of the parallelogram spanned by
the vectors a = 〈2, 1, 3〉 and b = 〈−1, 0, 3〉.

Solution: The area of parallelogram is ||a× b|| = ||(3,−9, 1)|| =
√

91.

21. Try to wrap an orange in a sheet of paper. What happens to the sheet of paper?

Solution: It gets crumpled up.

22. (Calculus III Review) Let f(x, y) = xy.

(a) Compute the gradient of f .

Solution: ∇f(x, y) = 〈y, x〉.

(b) Sketch the level curves of f for z = 0, 1, 2 and draw the vectors∇f(1, 0), ∇f(1, 1), ∇f(2, 1).

Solution: The level curves are given by 0 = xy ⇒ x = 0 or y = 0, 1 = xy ⇒ y = 1
x , and

2 = xy ⇒ y = 2
x . Thegradients are ∇f(1, 0) = (0, 1), ∇f(1, 1) = (1, 1), ∇f(2, 1) = (1, 2).

(c) In general, how are the level sets of a function related to the gradient vectors, geometri-
cally?

Solution: The gradient vectors are perpendicular to the level sets.

23. (Review of Last Class) Let F(x, y, z) = (xyz, x2 cos y, z2).

(a) Calculate divF.

Solution: divF=
∂

∂x
(xyz) +

∂

∂y
(x2 cos y) +

∂

∂z
(z2) = yz − x2 sin y + 2z

(b) Calculate curlF.
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Solution: curlF=

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
xyz x2 cos y z2

∣∣∣∣∣∣ =

∣∣∣∣ ∂/∂y ∂/∂z
x2 cos y z2

∣∣∣∣ i−∣∣∣∣∂/∂x ∂/∂z
xyz z2

∣∣∣∣ j+∣∣∣∣∂/∂x ∂/∂y
xyz x2 cos y

∣∣∣∣
= (

∂

∂y
(z2)− ∂

∂z
(x2 cos y))i− (

∂

∂x
(z2)− ∂

∂z
(xyz))j + (

∂

∂x
(x2 cos y)− ∂

∂y
(xyz))k

= (0, xy, 2x cos y − xz)

24. (Review of Last Class): Recall that if f is a C2 function, then curl(∇f) = 0. Use this fact to
show that F(x, y, z) = (−y, x, 0) is not conservative.

Solution: Since curlF = (0, 0, 2) 6= 0, F is not conservative.

25. (Parametrization Review) Let C be the portion of the unit circle in the first quadrant. It can
be parametrized by c(t) = (cos t, sin t), 0 ≤ t ≤ π

2 .

(a) What is the orientation/direction of this parametrization (i.e., as t increases, do you move
clockwise or counterclockwise)?

Solution: The parametrization moves counterclockwise, since c(0) = (1, 0) and c(π2 ) =
(0, 1).

(b) Show that c(t) = (cos 2t, sin 2t), 0 ≤ t ≤ π
4 is also a parametrization of C with the same

orientation.

Solution: Since x = cos 2t and y = sin 2t, we have x2 + y2 = cos2 2t+ sin2 2t = 1. More-
over, c(0) = (1, 0) and c(π4 ) = (0, 1). Thus this parametrization is of the same curve, with
the same endpoints, and has the same orientation.

(c) Reparametrize C so that the orientation is reversed.

Solution: There are different ways to reverse the orientation. Here are a couple of ways:
c(t) = (cos(π2 − t), sin(π2 − t)), 0 ≤ t ≤

π
2 or

c(t) = (cos(−t), sin(−t)) = (cos t,− sin t), 3π2 ≤ t ≤ 2π

26. (Some Light Physics/Calculus III Review) If F is a force field in R3, then an object in R3

might be moved by F (e.g. an apple falling from a tree due to a gravitational field). Suppose
we want the force field to move an object at rest along a particular path. The work done by
F measures how easy it is for F to move the object along the path.

If F is a constant force and the path is a straight line segment given by a vector v, then the
work done is given by the dot product W = F · v.

A classic example is when you pull a wagon. Suppose this wagon is connected to tracks and
can only move left or right. The vector F corresponds to the handle; F points in the direction
in which you are pulling the wagon and ||F|| measures how hard you are pulling the wagon.
The vector v is the direction that you want to pull the wagon.
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If the work done is 0, then the force is unable to move the object at all. This occurs when
W = F · v = 0, which geometrically means F is perpendicular to v. In the wagon example, if
you pull the handle straight up, it obviously will not move forward.

If W < 0, then the force moves the object in the “wrong” direction. This occurs when the
angle between F and v is greater than 90◦.

If W > 0, then the force is able to move the object in the correct direction. The work is
maximized when F and v point in the same direction. In the wagon example, if you pull the
wagon for a minute, you will get the furthest if F and v are parallel to each other.

Now for an actual computation: Suppose the handle of the wagon is given by F = 2i+j = 〈2, 1〉
and the direction in which we wish to pull it is v = i = 〈1, 0〉. Compute the work done by F
to move the wagon along v.

Solution: W = F · v = 2.

27. (Review of last lecture) Compute the work done by the force F(x, y, z) = xi+yj+zk in moving
a particle along the curve parametrized by c(t) = (t2, 3t, 2t3), 0 ≤ t ≤ 1.

Solution:

W =

∫
C
F · ds =

∫ 1

0
F(c(t)) ·c′(t) dt =

∫ 1

0
(t2, 3t, 2t3) · (2t, 3, 6t2) dt =

∫ 1

0
2t3 + 9t+ 12t5 dt = 7

28. (Surface Area Review)

(a) Let S be a surface with parametrization r(u, v), where a ≤ u ≤ b and c ≤ v ≤ d. Write
down the formula for the surface area of S.
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(b) Now suppose S is the graph of a function z = g(x, y). We can parametrize S by r(u, v) =
(u, v, g(u, v)). Using this parametrization, compute ||ru × rv||.

(c) Rewrite the formula of the surface area of S using the computation in part (b).

29. (An art project) Find a long rectangular strip of paper (cut the bottom 2 inches from a regular
8× 11 sheet of paper, for example). Draw a straight line down the center of the strip (that is
parallel to the long edge). If you glue the ends of the strip together without twisting it, you
will have a short cylinder and the line you drew will be on the same side of the strip.

Instead, twist the strip 180◦, as depicted below.

Now glue/staple the ends together. You are left with what is called a Möbius band. What
happened to the line you drew? Is it still on the same side of the strip?

Solution: The line doesn’t connect to itself and the strip only has one side.

30. (Calculus III Review) Let a and b be vectors and let θ be the acute angle between them. Recall
the formula from Calculus III that relates the dot product of these two vectors with θ. Use the
forumula to compute the angle between (1, 0, 1) and (5, 0, 0).

Solution: a · b = |a||b| cos θ. Thus we have 5 =
√

2(5) cos θ and so θ = π
4 .

9



31. (Review of Orientation) Let S be the part of the paraboloid z = 4−x2− y2 that lies above the
square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, with the downward/inward orientation. Parametrize S.

Solution: If we parametrize by r(u, v) = (u, v, 4− u2 − v2), then ru × rv = (2u, 2v, 1). When
u = 0 and v = 0, we are at the point r(0, 0) = (0, 0, 4). At this point, the normal vector is
ru × rv = (0, 0, 1), which points in the upward direction. Thus, we need the opposite orienta-
tion. To achieve this, we simply switch u and v: r(u, v) = (v, u, 4−v2−u2), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

32. (Review of Divergence and Curl). Let F = xi− 2xyzj + z2xk. Compute div(curlF).

Solution: Since F is a C2 vector field, div(curlF) = 0

33. (Review of Last Class)

(a) Let S be the surface given by x2 + y2 + z2 = 1, where z ≥ 0, oriented inward. Notice that
the boundary of S is the unit circle in the xy−plane. Is the orientation induced on ∂S
clockwise or counterclockwise, when viewed from above? Parametrize ∂S.

Solution: Since S is oriented inward, the induced orientation on ∂S is clockwise, when
viewed from above. Thus we can parametrize it by c(t) = (cos t,− sin t, 0), 0 ≤ t ≤ 2π.

(b) Use Stokes’ Theorem to calculate

∫∫
S

curlF · dS, where F = yi− 2j + exyzj.

Solution:

∫∫
S

curlF · dS =

∫
∂S

F · ds =

∫ 2π

0
F(c(t)) · c′(t) dt =

∫ 2π

0
sin2 t+ 2 cos t dt

=

∫ 2π

0
(
1

2
− 1

2
cos(2t)) + 2 cos t dt = π

34. (Review of Triple Integrals) Evaluate

∫∫∫
W

x dV , where W is the solid region bounded by the

surfaces x = 0, y = 0, z = 0, and 2x+ 2y + z = 4.

Solution: Consider the sketch of W below.
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Based on the sketch, W = {(x, y, z) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2− x, 0 ≤ z ≤ 4− 2x− 2y}. Thus

∫∫∫
W

x dV =

∫ 2

0

∫ 2−x

0

∫ 4−2x−2y

0
x dz dy dx =

4

3

35. (Calculus I, II, and/or III Review) Recall the Mean Value Theorem for Integrals. There is a
version for single, double, and triple integrals.

• If f is continuous on [a, b], then there exists a number x0 in [a, b] such that

f(x0) =
1

b− a

∫ b

a
f(x) dx

• If f is continuous on D ⊂ R2, then there exists a point (x0, y0) in D such that

f(x0, y0) =
1

Area(D)

∫∫
D

f(x, y) dA

• If f is continuous on W ⊂ R3, then there exists a point (x0, y0, z0) in W such that

f(x0, y0, z0) =
1

Vol(W )

∫∫∫
W

f(x, y, z) dV

Let f(x) = 1 + x2 on [−1, 2]. Find a number x0 in [−1, 2] that satisfies the (first version) of
the Mean Value Theorem.

Solution: Since f(x0) = 1 + x20 and
1

2− (−1)

∫ 2

−1
1 + x2 dx = 2, by the Mean Value Theorem,

1 + x20 = 2 and so x0 = ±1.

36. (Calculus I Review) Recall, that the differential of a function y = f(x) is given by dy = f ′(x)dx.
More generally, the differential of a function of n variables z = f(x1, . . . , xn) is given by

dz =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn.
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(a) Let f(x) = x2 + x. Compute the differential of f and use it to estimate the change in f
as x changes from 1 to 1.01.

Solution: dy = (2x + 1)dx. As x changes from 1 to 1.01, dx = .01 and so the change in
f is approximately dy = (2(1) + 1)(.01) = .03.

(b) Let z = f(x, y) = xy. Compute the differential of f and use it to estimate the change in
f as (x, y) changes from (1, 1) to (1.01, .08).

Solution: dz = y dx + x dy. As (x, y) changes from (1, 1) to (1.01, .08), we have that
dx = .01 and dy = −.02. Thus the change in f is approximately dz = (1)(.01)+(1)(−.02) =
−.01.

37. (Review of Last Class) Let α = 2xz dx + 3xy dy + 2ez dz and β = 3x dy − 2 dz be 1-forms on
R3. Compute α ∧ β.

Solution:

α ∧ β = (2xz dx+ 3xy dy + 2ez dz) ∧ (3x dy − 2 dz)

= 6x2z dx dy − 4xz dx dz + 9x2y dy dy − 6xy dy dz + 6xez dz dy − 4ez dz dz

= 6x2z dx dy − 4xz dx dz − 6xy dy dz + 6xez dz dy

= 6x2z dx dy − 4xz dx dz − 6xy dy dz − 6xez dy dz

= 6x2z dx dy − 4xz dx dz − (6xy + 6xez) dy dz

38. (Review of Change of Variables) Use the change of variables u = 2x + 3y and v = x − y to

rewrite the integrand of

∫∫
R

(2x+ 3y) sin(x− y) dx dy. Do not forget about the determinant of

the Jacobian.

39. (Review of Last Class) Let ω = Ady dz+B dz dx+C dxdy be a 2-form on R3. Let F(x, y, z) =
(A,B,C) be a vector field on R3. Show that dω = divF dx dy dz.
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