X-Slice links

Jon Simone
Georgia Tech
Knots: Knotted circles in \mathbb{R}^3

- \bigcirc (unknot)
- $\bigcirc \bowtie$ (trefoil)
- $\bigcirc \bowtie \bowtie$ (figure-eight)

Links: Collection of knots in \mathbb{R}^3

Surfaces:

- \bigcirc sphere
- $\bigcirc \bowtie$ torus
- $\bigcirc \bowtie \bowtie$ genus 2 surface
- $\bigcirc \bowtie \bowtie \bowtie$ genus g surface
- \circlearrowleft disk
- $\bigcirc \bowtie \bowtie \bowtie$ Mobius band
- etc.

(In topology, everything is made of rubber)

Note: The boundary of a surface in \mathbb{R}^3 is a link in \mathbb{R}^3
Fact: Every link in \mathbb{R}^3 is the boundary of an embedded surface in \mathbb{R}^3 (proved by Frankl-Pontryagin in 1930 and an algorithm to construct such surfaces was given by Seifert in 1934).

Surface doesn't intersect itself.

Valid surface

Not a valid surface

The only knot in \mathbb{R}^3 that bounds an embedded disk in \mathbb{R}^3 is the unknot.
Motivating Example

Let K be a knot in \mathbb{R}^2 (it must be the unknot)

Let D be a disk in \mathbb{R}^2 bounded by K

Then D can be pushed into \mathbb{R}^3 giving a disk in \mathbb{R}^3 bounded by K, which is still in \mathbb{R}^2

Moreover, K can bound other kinds of surfaces in \mathbb{R}^3 that it cannot bound in \mathbb{R}^2

The same is true for knots & links in \mathbb{R}^3:

Any surface bounded by a link L in \mathbb{R}^3 can be pushed into \mathbb{R}^4

Moreover, L can potentially bound more kinds of surfaces in \mathbb{R}^4 than in \mathbb{R}^3
Def: A knot in \mathbb{R}^3 is called slice if it bounds an embedded disk in \mathbb{R}^4.

Why a disk?
The simplest surface a knot can bound is a disk.
It is hard to bound simple surfaces
It is easy to bound more complicated surfaces.

Ex: The unknot is slice since it bounds a disk in \mathbb{R}^3 that we can push into \mathbb{R}^4

Ex: is slice even though it does not bound a disk in \mathbb{R}^3 (since it is not the unknot).

--- how can we tell?
Band Moves

Pick two arcs on K. Draw two arcs between the endpoints of the arcs you drew on K. Erase the arcs on K.

Fact: If we perform one band move to K and get \(000\) then K is slice.

Why?

These unknots band disjoint disks in \mathbb{R}^4.

Redraw the arcs that were erased to recover K. Fill in the arcs with a rectangle (band).

The result is a disk in \mathbb{R}^4 with boundary K.

More generally, if we perform n band moves and get $0\ldots\ldots\ldots\ldots0$ then K is slice.
Ex: A slice knot

We can also see the disk (made of 2 disks and a band)

This disk is in \(\mathbb{R}^3 \), but it intersects itself in \(\mathbb{R}^3 \), so it is an invalid surface in \(\mathbb{R}^3 \)

Now disk is embedded in \(\mathbb{R}^4 \) (i.e., it does not intersect itself in \(\mathbb{R}^4 \))

So \(K \) is slice.
Def: A link L in \mathbb{R}^3 is slice if each component of L bounds an embedded disk in \mathbb{R}^4 and the disks are disjoint.

Ex: $\quad \sim \Rightarrow \quad \circ \circ \quad = \quad \circ \circ$

This is a "classical" notion of sliceness for links that many researchers have studied.
Def (2012): A link \(L \) in \(\mathbb{R}^3 \) is \textcolor{red}{\textit{x-slice}} if \(L \) bounds an embedded surface in \(\mathbb{R}^4 \) with no closed components and Euler characteristic:

\[
\chi(S) = \# \text{vertices} - \# \text{edges} + \# \text{faces}
\]

\[\chi = 4-4+1 = 1 \]

\[\chi = 4-6+2 = 0 \]

Note: If \(L \) has one component, then \(x \)-slice = slice

(since the only \(x=1 \) surface w/ one boundary component is the disk)
Why look at X-slice?

- As with knots, the simplest surfaces that certain links can bound are those with $X=1$.
- X-slice links are also useful for constructing 3-dimensional and 4-dimensional objects that topologists are interested in studying.

To show a link is X-slice:

Use band moves as with knots.

We can also see the $X=1$ surface in this example:

L bounds embedded Disk U Mobius band

$\Rightarrow X = 1 + 0 = 1$

$\Rightarrow L$ is X-slice
Summer REU: Determine which pretzel links are \(x \)-slice.

With:
- Hannah Turner (co-mentor)
- Weizhe Shen (grad TA)

Students:
- Sophia Fanelle (Barnard)
- Ben Heinemann (Utah)
- Evan Huang (Rice)

\[P(-3,2,1) \quad P(2,-2,4,3) \]

Ex: \(P(x,-x,y) \) is \(x \)-slice
\[
\begin{align*}
\L & \quad \rightarrow \\
\L \quad & = 0 \\
\end{align*}
\]

Much is known about which pretzel knots are slice.

The goal of the REU was to extend these results to links and understand which pretzel links are \(x \)-slice.
Tools

- **Construction**
 Show certain infinite families of pretzel links are x-slice by using band moves

- **Obstruction** (this is the hard part)
 Show "most" pretzel links are not x-slice
 using algebraic tools

 e.g. Donaldson's Diagonalization Theorem, Lattice Embeddings, Heegaard Floer Homology d-invariants

 more or less understandable if you know linear algebra

(The majority of the summer was spent)
understanding and applying these obstructive tools
Some Results

- If \(p_1, p_2, \ldots, p_k > 0 \), then \(P(p_1, \ldots, p_k) \) is \(\alpha \)-slice if and only if
 \[
 (p_1, p_2, \ldots, p_k) = (k-3, 1, \ldots, 1) \text{ or } (p_1, p_2, \ldots, p_k) = (m+1, 1, \ldots, 1)
 \]

- The following 4-stranded pretzel links are \(\alpha \)-slice:
 \[
 P(p, q, -2, -2), \ P(p, q, -q, -p-1), \ P(p, q, -q, -p-4) \text{ (there are more)}
 \]

- If \(p, q, r, s \) satisfy some restrictive algebraic conditions, then \(P(p, q, r, s) \) is not \(\alpha \)-slice
 E.g. If \(p, q, r \geq 3 \) and \(r \leq -1 \), then \(P(p, q, r, s) \) is not \(\alpha \)-slice

Open Problem: finish the classification of \(\alpha \)-slice 4-stranded pretzel links

(slice 4-stranded knots were classified by Lecuona in 2013)
Thanks!

Jon Simone
jsimone7@gatech.edu

Challenge:
All links on this page are X-slice. Can you find band moves to prove it?
Answers:

1. \[\begin{array}{c}
 \text{Diagram 1} \\
 \rightarrow \\
 \text{Diagram 2} \\
 \rightarrow \\
 \text{Diagram 3} \\
 \rightarrow \\
 \text{Diagram 4} \\
 \rightarrow \\
 \text{Diagram 5} \\
 \rightarrow \\
 \text{Diagram 6} \\
 \rightarrow \\
 \text{Diagram 7} \\
\end{array} \]