Cubiquity
Def: A sublattice
$$\Lambda CZ^{n}$$
 is called cubiquitons if
 Λ contains a point in every unit cube with integer vertices
 Λ lattice embedding φ is called cubiquitons
if $Im \varphi$ is cubiquitons.
Notation: $IO_{1}S^{n} = unit cube with vertices having conducts in $Ia_{1}B$
 $IO_{1}S^{n} = \frac{1}{1-2}$
We have lattice embedding $\varphi: (Z^{n}, Q) \rightarrow (Z, -T)$
given by $\varphi(f_{n}) = -3e_{1}+2e_{1}$ (check)
 $\varphi(f_{n}) = e_{1}+e_{2}$
Im Q
Im Q
Im Q
Im Q
Im S is *Imale* cubiquitous since the unit
cube $C = [T_{1}^{n}] + [O_{1}]^{2} = [(-1,1), (-1,2), (-2,1), (-2,-2)]$
does not intersect $Im Q$.$

We can also prove this algebraically.
Show that
$$\forall [5] \in C$$
, $[5]$ is not a
linear combination of $\psi(f_i) = \begin{bmatrix} -3\\ 2 \end{bmatrix}$ and $\psi(f_2) = \begin{bmatrix} 1 \end{bmatrix}$
 (\Rightarrow) Show that $\nexists x_i y \in Z$ such that $x \begin{bmatrix} -3\\ 2 \end{bmatrix} + \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} 6\\ 6 \end{bmatrix} \forall \begin{bmatrix} 6\\ 6 \end{bmatrix} \in C$
 (\Rightarrow) Show $\frac{-3x+y=a}{2x+y=b}$ has no integer solution $\forall [6] \in C$

Ex: Recall, for
$$Q = \begin{bmatrix} -5 & 1 \\ 1 & -2 \end{bmatrix}$$
, we have a
lattice embedding $Q: (Z^2, Q) \longrightarrow (Z^2, -I)$
given by $q(f_i) = -2e_i + e_2$
 $q(f_2) = e_i + e_2$

We can show this embedding is cubiquitons.

System has an integer solution.

⇒ Imy nC ≠Ø.

Working Geometrically

Def: let
$$S = \{v_{ij}, v_n\} \subset \mathbb{Z}^n$$
 be a subset of vectors
(e.g. $v_i = \varphi(f_i)$ for some lattice embedding φ)
The Wu element of S is $W = \sum_{i=1}^n v_i$

$$E_{X}: S = \{-2e_{1}+e_{2}, e_{1}+e_{2}\} \subset \mathbb{Z}^{2}$$
$$W = -2e_{1}+e_{2}+e_{1}+e_{2} = -e_{1}+2e_{2}$$

Note: Geometrically, if D is the fundamental parallelopiped spanned by S, then W is the corner opposite O.

Def: Let
$$S = [v_{1,-}, v_n]$$
 be a subset of $(Z^n, -I)$.
Let $V_i \cdot v_i = a_i \ge 2$ $\forall i$.
S is called:

Standard if
$$V_i \cdot V_j = \begin{cases} 1 & \text{if } |i-j| = | -a_i \cdot a_2 \\ 0 & \text{if } |i-j| > | \end{cases}$$

+ Cyclic if
$$a_j \ge 3$$
 for some j
and $V_i \cdot V_j = \begin{cases} 1 & \text{if } |i-j|=| \text{ or } i \neq j \in [1,n] \end{cases}$

Def: Given a subset
$$S = [v_{1}, ..., v_n]$$
 of $(Z_1^n, -1)$ with
 $v_i \cdot v_i = -a_i$ $\forall c_i$, we define $I(S) := \sum_{i=1}^n (a_i - 3)$
E: $S = [7-2e_i + e_2, e_i + e_2]$ is standard.
 $v_i \cdot v_i = -5$, $v_2 \cdot v_2 = -2$, $v_i \cdot v_2 = 1$
 $I(S) = 2$.
Theorem: Let $S = [v_{1}, ..., v_n]$ be a standard or + cyclic
subset with $I(S) > 0$
let $W = \sum_{i=1}^n v_i = \sum_{i=1}^n k_i e_i$ be its Wu element.
If K_i is odd for all i then the
lattice Λ spanned by S is not cubiquitors.
Proof (for + cyclic case)
let $Z = \frac{1}{2}W$ (centroid of $D = Span S$).
Then $Z = \sum_{i=1}^n \frac{k_i}{2}e_i$. Note that $\frac{k_i}{2} \notin Z$ since k_i is odd
let C be the unit cube
with centroid Z
Me will Show $\forall x \in \Lambda$, $d(x_2) > \frac{1}{2}$, which
implies $\Lambda C = \phi \implies \Lambda$ is not cubiquitors.

$$\begin{aligned} \left| \text{Let } x \in \Lambda. \quad \text{Aen } x = \sum_{i=1}^{n} \lambda_{i} v_{i} \\ d(x, 2)^{2} = \left\| x - 2 \right\|^{2} = \left\| \sum_{i=1}^{n} \lambda_{i} v_{i} - \sum_{i=1}^{n} \frac{1}{2} v_{i} \right\|^{2} = \left\| \sum_{i=1}^{n} (A_{i} - \frac{1}{2}) v_{i} \right\|^{2} \\ &= \langle \sum (A_{i} - \frac{1}{2})^{2} v_{i}, \sum (A_{i} - \frac{1}{2}) v_{i} \rangle \quad (\text{usual dat product}) \\ &= \sum_{i=1}^{n} (A_{i} - \frac{1}{2})^{2} \langle v_{i} v_{i} \rangle + 2\sum_{i=1}^{n} (A_{i} - \frac{1}{2}) \langle A_{i} v_{i} - \frac{1}{2} \rangle \langle v_{i}, V_{i} \rangle \\ &= \frac{n}{2} \left[\frac{(2A_{i} - 1)^{2}}{4} a_{i} - \sum_{i=1}^{n} \frac{4A_{i}A_{i}v_{i} - 2A_{i} - 2A_{i}v_{i} + 1}{2} \right] \\ &= \left(\frac{(2A_{i} - 1)^{2}}{4} a_{i}^{-1} \right) + \left(\frac{(A_{i} - 1)^{2}}{4} + \frac{(2A_{i} - 1)^{2}}{4} a_{i}^{-1} \right) + \left(\frac{(A_{i} - 1)^{2}}{4} + \frac{(A_{i} - 1)^{2}}{2} a_{i}^{-1} \right) \\ &= \left(\frac{(2A_{i} - 1)^{2}}{4} (a_{i} - 1) + \left(\frac{(A_{i} - 1)^{2}}{4} + \frac{(A_{i} - 1)^{2}}{4} a_{i}^{-1} \right) - \sum_{i=2}^{n} \frac{4A_{i}A_{i}v_{i} - 2A_{i} - 2A_{i}v_{i} + 1}{2} \right] \\ &= \left(\frac{(2A_{i} - 1)^{2}}{4} (a_{i} - 1) + \left(\frac{(A_{i} - 1)^{2}}{4} + \frac{(A_{i} - 1)^{2}}{4} a_{i}^{-1} \right) - \sum_{i=2}^{n} \frac{4A_{i}A_{i}v_{i} - 2A_{i} - 2A_{i}v_{i} + 1}{2} \right] \\ &= \left(\frac{(A_{i} - A_{2})^{2}}{4} - \sum_{i=2}^{n} \frac{4A_{i}A_{i}v_{i} - 2A_{i} - 2A_{i}v_{i} + 1}{2} \right) \\ &= \sum_{i=1}^{n} \frac{(A_{i} - A_{2})^{2}}{4} - \sum_{i=2}^{n} \frac{4A_{i}A_{i}v_{i} - 2A_{i} - 2A_{i}v_{i} + 1}{4} \\ &= \sum_{i=1}^{n} \frac{(A_{i} - A_{2})^{2}}{4} - \sum_{i=2}^{n} \frac{4A_{i}A_{i}v_{i} - 2A_{i} - 2A_{i}v_{i} + 1}{4} \\ &= \sum_{i=1}^{n} \frac{(A_{i} - A_{2})^{2}}{4} - \sum_{i=1}^{n} \frac{4A_{i}A_{i}v_{i} - 2A_{i} - 2A_{i}v_{i} + 1}{4} \\ &= \sum_{i=1}^{n} \frac{(A_{i} - A_{2})^{2}}{4} - \sum_{i=1}^{n} \frac{(A_{i} - A_{i}v_{i})^{2}}{4} \\ &= \sum_{i=1}^{n} \frac{(A_{i} - A_{2})^{2}}{4} - \sum_{i=1}^{n} \frac{(A_{i} - A_{i}v_{i})^{2}}{4} \\ &= \sum_{i=1}^{n} \frac{(A_{i} - A_{2})^{2}}{4} - \sum_{i=1}^{n} \frac{(A_{i} - A_{i}v_{i})^{2}}{4} \\ &= \sum_{$$

 $\Rightarrow d(x,z) > \frac{1}{2}$

Ex: Let
$$Q = \begin{bmatrix} -5 & i & i \\ i & -10 & i \\ i & i & -2 \end{bmatrix}$$
 and consider the
lattice embedding $q:(Z^3,Q) \longrightarrow (Z^3,-I)$
given by $q(f_1) = Ze_1 - e_2$
 $q(f_2) = e_2 - 3e_3$
 $q(f_3) = -e_1 - e_2$

The subset
$$\{2e_1-e_2, e_2-3e_3, -e_1-e_2\}$$
 is + cyclic
with $I(s) = 7 > 0$ and $W = e_1-e_2-3e_3$
Thus by the theorem, φ is not cubiquitous.