Cubiquity
Def: A sublattice $\Lambda \subset \mathbb{Z}^{n}$ is called cubiquitous if Λ contains a point in every unit cube with integer vertices. A lattice embedding φ is called cubiquitons if $\operatorname{lm} \varphi$ is cubiquitous.

Notation: $\{0,1\}^{n}=$ unit cube with vertices having coordinates in $[0,1]$

$$
\{0,1\}^{2}=\frac{1}{\infty}
$$

Ex: Let $Q=\left[\begin{array}{cc}-13 & 1 \\ 1 & -2\end{array}\right]$
We have lattice embedding $\varphi:\left(\mathbb{Z}^{2}, 0\right) \rightarrow\left(\mathbb{Z}^{2},-I\right)$ given by $\varphi\left(f_{1}\right)=-3 e_{1}+2 e_{2} \quad$ (Check)

$$
\varphi\left(f_{2}\right)=e_{1}+e_{2}
$$

$\ln \varphi$
This is not cubiquitous since the unit Cube $C=\left[\begin{array}{c}-1 \\ 1\end{array}\right]+\{0,1\}^{2}=\{(-1,1),(-1,2),(-2,1),(-2,-2)\}$ does not intersect $\operatorname{lm} \varphi$.

We can also prove this algebraically.
Show that $\forall\left[\begin{array}{l}a \\ b\end{array}\right] \in C,\left[\begin{array}{l}a \\ b\end{array}\right]$ is not a linear combination of $\varphi\left(f_{1}\right)=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$ and $\varphi\left(f_{2}\right)=[1]$
\Leftrightarrow Show that $\exists x, y \in \mathbb{Z}$ such that $x\left[\begin{array}{c}-3 \\ 2\end{array}\right]+\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right] \forall\left[\begin{array}{l}a \\ b\end{array}\right] \in C$ \Leftrightarrow Show $\begin{array}{r}-3 x+y=a \\ 2 x+y=b\end{array}$ has no integer solution $\forall\left[\begin{array}{l}a \\ b\end{array}\right] \in C$

Ex: Recall, for $Q=\left[\begin{array}{cc}-5 & 1 \\ 1 & -2\end{array}\right]$, we have a Lattice imbedding $\varphi:\left(Z^{2}, Q\right) \rightarrow\left(Z^{2},-I\right)$ given by $\varphi\left(f_{1}\right)=-2 e_{1}+e_{2}$

$$
\varphi\left(f_{2}\right)=e_{1}+e_{2}
$$

We con show this embedding is cubiquitous.
Let C be an arbitrary unit cube in Z^{n}. Then $C=\left[\begin{array}{l}a \\ b\end{array}\right]+\{0,1\}^{n}=\left\{\left.\left[\begin{array}{c}a+\lambda_{1} \\ b+\lambda_{2}\end{array}\right] \right\rvert\, \lambda_{1}, \lambda_{2} \in\{0,1\}\right\}$ for some integers a and b.
We need to show that $C \cap \operatorname{lm} \varphi \neq \phi$.
Equivalently, we need to show that $\exists \lambda_{1}, \lambda_{2} \in[0,1\}$ such that $\left[\begin{array}{c}a+\lambda_{1} \\ b+\lambda_{2}\end{array}\right] \in \operatorname{lm} \varphi$

Equivalently, we need to show that
$\exists \lambda_{1}, \lambda_{2} \in\{0,1\}$ such that
$\begin{aligned}-2 x+y & =a+d_{1} \\ x+y & =b+d_{2}\end{aligned} \quad$ has an integer solution
Solving over \mathbb{R} gives:

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
-2 & 1 & a+\lambda_{1} \\
1 & 1 & b+\lambda_{2}
\end{array}\right] \sim\left[\begin{array}{ll|l}
1 & 0 & b+\lambda_{2}-\frac{a+2 b+\lambda_{1}+2 \lambda_{2}}{3} \\
0 & 1 & \frac{a+2 b+\lambda_{1}+2 \lambda_{2}}{3}
\end{array}\right]} \\
& \Rightarrow \quad x=b+\lambda_{2}-\frac{a+2 b+\lambda_{1}+2 \lambda_{2}}{3}, \quad y=\frac{a+2 b+\lambda_{1}+2 \lambda_{2}}{3}
\end{aligned}
$$

We have 3 cases to consider: $a+2 b \equiv 0,1,2 \operatorname{mad} 3$

- If $a+2 b \equiv 0 \bmod 3$, then $3 l a+2 b$

Let $\lambda_{2}=\lambda_{1}=0$. Then $y=\frac{a+2 b}{3} \in \mathbb{Z}$ and $x=b-\frac{a+2 b}{3} \in \mathbb{Z}$

- If $a+2 b \equiv 1 \equiv-2 \bmod 3$, then $3 \mid a+2 b+2$

Let $\lambda_{1}=0$ and $\lambda_{2}=1$. Then $y=\frac{a+2 b+2}{3} \in \mathbb{Z}$ and $x=b+1-\frac{a+2 b+2}{3} \in \mathbb{Z}$

- If $a+2 b \equiv 2 \equiv-1 \bmod 3$, then $3 \mid a+2 b-2$

Let $\lambda_{1}=1$ and $\lambda_{2}=0$. Then $y=\frac{a+2 b+1}{3} \in \mathbb{Z}$ and $x=b-\frac{a+2 b+1}{3} \in \mathbb{Z}$

Hence, in every case, $\exists \lambda_{1}, \lambda_{2} \in\{0,1\}$ such that the system has an integer solution.
$\Rightarrow \operatorname{lm} \varphi \cap C \neq \varnothing$.

Working Geometrically
Def: Let $S=\left\{v_{1}, \cdots v_{n}\right\} \subset z^{n}$ be a subset of vectors (e.g. $v_{i}=\varphi\left(f_{i}\right)$ for some lattice embedding φ)
the Wu element of S is $W=\sum_{i=1}^{n} v_{i}$
Ex:

$$
\begin{aligned}
& S=\left\{-2 e_{1}+e_{2}, e_{1}+e_{2}\right\} \subset Z^{2} \\
& W=-2 e_{1}+e_{2}+e_{1}+e_{2}=-e_{1}+2 e_{2}
\end{aligned}
$$

Note: Geometrically, if D is the fundamental parallelopiped spanned by S, then W is the comer opposite O.

Def: Let $S=\left\{v_{1}, \cdots, v_{n}\right\}$ be a subset of $\left(z^{n},-\Sigma\right)$. Let $v_{i} \cdot v_{i}=a_{i} \geqslant 2 \quad \forall i$.
S is called:
Standard if $v_{i} \cdot v_{j}=\left\{\begin{array}{lll}1 & \text { if }|i-j|=1 & a_{1}-a_{2} \ldots \\ 0 & \text { if }|i-j|>1 & \ldots\end{array}\right.$

+ cyclic if $a_{j} \geq 3$ for some j and $v_{i} \cdot v_{j}= \begin{cases}1 & \text { if }|i-j|=1 \text { or } i \neq j \in[1, n\} \\ 0 & \text { else }\end{cases}$

Def: Given a subset $S=\left\{v_{1}, \cdots, v_{n}\right\}$ of $\left(\mathcal{Z}^{n},-I\right)$ with $v_{i} \cdot v_{i}=-a_{i} \quad \forall i$, we define $I(s):=\sum_{i=1}^{n}\left(a_{i}-3\right)$

Ex: $S=\left\{-2 e_{1}+e_{2}, e_{1}+e_{2}\right\}$ is Standerd.

$$
\begin{aligned}
& v_{1} \cdot v_{1}=-5, \quad v_{2} \cdot v_{2}=-2, \quad v_{1} \cdot v_{2}=1 \\
& I(s)=2 .
\end{aligned}
$$

Theorem: Let $S=\left\{v_{11} \cdots, v_{n}\right\}$ be a standard or +cyclic subset with $I(s)>0$
Let $w=\sum_{i=1}^{n} v_{i}=\sum_{i=1}^{n} k_{i} e_{i}$ be its Wu element. If k_{i} is odd for all i then the lattice 1 spanned by S is not cubiquitous.
proof (for + cyclic case)
let $z=\frac{1}{2} \omega$ (centroid of $D=$ Span S).
Then $z=\sum_{i=1}^{n} \frac{k_{i}}{2} e_{i}$. Note that $\frac{K_{i}}{2} \notin Z$ since K_{i} is odd Let C be the unit cube with centroid z

Then $\forall y \in C, d(y, z)=\frac{\sqrt{n}}{2}$

We will show $\forall x \in 1, d(x, z)>\frac{\sqrt{n}}{2}$, which implies $\Lambda \cap C=\varnothing \Rightarrow \Lambda$ is not cubiquitous.

Let $x \in \Lambda$. Then $x=\sum_{i=1}^{n} \lambda_{i} v_{i}$

$$
\begin{aligned}
d(x, z)^{2} & =\|x-z\|^{2}=\left\|\sum_{i=1}^{n} \lambda_{i} v_{i}-\sum_{i=1}^{n} \frac{1}{2} v_{i}\right\|^{2}=\left\|\sum_{i=1}^{n}\left(\lambda_{i}-\frac{1}{2}\right) v_{i}\right\|^{2} \\
& =\left\langle\sum\left(\lambda_{i}-\frac{1}{2}\right) v_{i}, \sum\left(\lambda_{i}-\frac{1}{2}\right) v_{i}\right\rangle \text { (usual dat product) } \\
& =\sum_{i=1}^{n}\left(\lambda_{i}-\frac{1}{2}\right)^{2} \underbrace{\left\langle v_{i}, v_{i}\right\rangle}_{=a_{i}}+2 \sum_{i=1}^{n}\left(\lambda_{i}-\frac{1}{2}\right)\left(\lambda_{i+1}-\frac{1}{2}\right) \frac{\left\langle v_{i}, v_{i+1}\right\rangle}{=-1} \leftarrow n+1=1 \\
& =\sum_{i=1}^{n} \frac{\left(2 \lambda_{i}-1\right)^{2}}{4} a_{i}-\sum_{i=1}^{n} \frac{4 \lambda_{i} \lambda_{i+1}-2 \lambda_{i}-2 \lambda_{i+1}+1}{2} \\
= & \frac{\left(2 \lambda_{1}-1\right)^{2}}{4}\left(a_{1}-1\right)+\frac{\left(2 \lambda_{1}-1\right)^{2}}{4}+\frac{\left(2 \lambda_{2}-1\right)^{2}\left(a_{2}-1\right)+\frac{\left(2 \lambda_{2}-1\right)^{2}}{4}+\sum_{i=3}^{n} \frac{\left(2 \lambda_{i}-1\right)^{2}}{4} a_{i}}{4} \\
& -\frac{4 \lambda_{1} \lambda_{2}-2 \lambda_{1}-2 \lambda_{2}+1}{2}-\sum_{i=2}^{n-1} \frac{4 \lambda_{i} \lambda_{i+1}-2 \lambda_{i}-2 \lambda_{i+1}+1}{2} \\
= & \frac{\left(2 \lambda_{1}-1\right)^{2}\left(a_{1}-1\right)+\frac{\left(2 \lambda_{2}-1\right)^{2}}{4}\left(a_{2}-1\right)+\sum_{i=3}^{n} \frac{\left(2 \lambda_{i-1}\right)^{2}}{4} a_{i}}{4} \\
& \left(\lambda_{i}-\lambda_{2}\right)^{2}-\sum_{i=2}^{n} \frac{4 \lambda_{i} \lambda_{i+1}-2 d_{i}-2 \lambda_{i+1}+1}{4}
\end{aligned}
$$

repeat for all terms in last sum

$$
\begin{aligned}
& \quad=\sum_{i=1}^{n} \frac{\left(2 d_{i-1}\right)^{2}\left(a_{i-2}\right)+\sum_{i=1}^{n}\left(\lambda_{i}-\lambda_{i+1}\right)^{2}}{} \quad \geq \sum_{i=1}^{n} \frac{a_{i-2}}{4}=\frac{\sum\left(a_{i}-3\right)+n}{4}=\frac{I(s)+n}{4}>\frac{n}{4} \\
& \Rightarrow d(x, z)>\frac{\sqrt{n}}{2} .
\end{aligned}
$$

Ex: Let $Q=\left[\begin{array}{ccc}-5 & 1 & 1 \\ 1 & -10 & 1 \\ 1 & 1 & -2\end{array}\right]$ and consider the lattice embedding $\varphi:\left(\mathbb{D}^{3}, Q\right) \rightarrow\left(\mathbb{Z}^{3},-I\right)$ given by

$$
\begin{aligned}
& \varphi\left(f_{1}\right)=2 e_{1}-e_{2} \\
& \varphi\left(f_{2}\right)=e_{2}-3 e_{3} \\
& \varphi\left(f_{3}\right)=-e_{1}-e_{2}
\end{aligned}
$$

The subset $\left\{2 e_{1}-e_{2}, e_{2}-3 e_{3},-e_{1}-e_{2}\right\}$ is + cyclic with $I(s)=7>0$ and $W=e_{1}-e_{2}-3 e_{3}$ thus by the theorem, φ is not cubiquitous.

