Double Branched Covers
Let X be an n-manifold.
Let $B \subset X$ be an $(n-2)$-dimensional submanifold (branch locus) A double cover of X branched along B is an n-manifold Z, along with a continuous map $f: Z \rightarrow X$ satisfying

- $f^{-1}(B)$ is an $(n-2)$-dimensional submanifold of Z
- $\left.f\right|_{Z-f^{-1}(B)}: Z-f^{-1}(B) \longrightarrow X-B$ is a double cover

Ex: S^{2} is a double cover of S^{2} branched along two points. View $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ and $B=\{(0,0,1),(0,0,-1)\}$ Let $i: S^{2} \rightarrow S^{2}$ be 180°-rotation about zaxis. Then $i(B)=B$ and the questient of S^{2} by i is $S^{2} / \tau \approx S^{2}$.
Let $q: s^{2} \longrightarrow s^{2} / i \cong s^{2}$ denote the quotient map.

then $\left.q\right|_{s^{2}\{x, y\}}$ is a double cover and $q^{-1}(B)=\{x, y\}=B$.

Ex: B^{3} is a double branched cover of B^{3} branched along a line segment L with endpoints on ∂B^{3}.
As above, let $i: B^{3} \rightarrow B^{3}$ be given by 180° - rotation about the z-axis. Notice, $B^{3} / L \approx B^{3}$ and $i(L)=L$ Let $q: B^{3} \longrightarrow B^{3} / i \approx B^{3}$ be the quotient map.

then $\left.q\right|_{B^{3}-B}$ is a double cover and $q^{-1}(B)=B$.
Ex: T^{2} is a double cover of S^{2} branched along 4 points

Ex: $S^{\prime} \times D^{2}$ is a double cover of B^{3} branched along two ares with endpoints on $\partial B^{3}=S^{2}$.

In general, if X has boundery and $B C X$ has $\partial B<\partial X$, then the boundary of a double cover of X branched along B is a double cover of ∂X branched along ∂B.

Increasing dimension, let's think about branched covers of S^{3} and B^{4}.

Ex: S^{3} is a double cover of S^{3} branched along the unknot $U . B^{4}$ is a double cover of B^{4} branched along a spanning disk of U.

We are interested in the following situation. Suppose $L \subset S^{3}$ is a link that bounds a surface $F \subset B^{4}$ with no closed components.

It turns ont \exists unique double covers of S^{3} and B^{4} branched along L and F, respectively, We denote them by $\Sigma_{2}\left(S^{3}, L\right)$ and $\Sigma_{2}\left(B^{4}, F\right)$.
Note that $\partial \Sigma_{2}\left(B^{4}, L\right)=\Sigma_{2}\left(\partial B_{1}^{4}, \partial L\right)=\Sigma_{2}\left(S^{3}, L\right)$ We would like to understand these manifolds.

An algorithm
Let L be any link and choose a diagram of L.
let F be a spanning surface for L (not necessarily onientable)
Assign each crossing +1 or -1 according to the convention:

the Tait graph associated to F, deroted by F_{F}, is obtained as follows. Label the regions $R_{0, \ldots,} R_{n}$.

- $R_{i} \longrightarrow$ vertex V_{i} with weight $-\sum$ signs of crossings incident to R_{i}
- ± 1 crossing between R_{i} and $R_{j} \sim \pm 1$ edge between v_{i} and v_{j}

We associate a symmetric bilinear form G_{F} on $H_{1}(F)$ Called the Gordon-Litherland form as follows:
Delete R_{0} and the edges incidence to R_{0}.

Let G_{F} be the incidence matrix of the resulting graph.

Then G_{F} represents G_{F} in some basis for $H_{1}(F)$.
We call G_{F} a Goeritz matrix for F
Facts off F is orientable, then $V+V^{\top}$ also represents G_{F}, where V is a Seifert matrix V of L.

- G_{F} represents the intersection form of $\Sigma_{2}\left(B^{4}, F\right)$ (after F is pushed into B^{4})

Ex: For the trefoil $k=$
and the spanning surface $F=$ Mobius bond $=$ $\Sigma_{2}\left(s^{3}, K\right)$ bounds $\sum_{2}\left(B^{4}, F\right)$, which has intersection form $G_{F}=\left[\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right]$.
$\Sigma_{2}\left(B_{1}^{4}, F\right)$ is given by the handlebodey diagram
Moreover, $\sum_{2}\left(s^{3}, k\right)$ is a "lens space."

Using Checkerboard surfaces
Given a fixed diagram for $L C S^{3}$, there are two checkerboard surfaces spanning L, which we call B and W with the convention that B is bounded.

Each gives a Gooritz matrix

Fact: If L is alternating, then G_{B} and G_{w} are definite.
L admits a diagram whose crossings alternate between over and under In particular, one is positive definite and the other is negative definite.

So $\sum_{2}\left(B^{4}, B\right)$ and $\sum_{2}\left(B^{4}, \omega\right)$ are both definite (one is positive definite, one is negative definite)

Note: For G_{w} and G_{B} in the last example, \exists Lattice embeddings

$$
\left(Z^{2}, G_{w}\right) \rightarrow\left(Z^{2}, I\right) \text { and }\left(2^{4}, G_{B}\right) \rightarrow\left(2^{4},-I\right)
$$

(You know J lattice embeddings

$$
\left(Z^{2},-G_{\omega}\right) \rightarrow\left(Z^{2},-I\right) \text { and }\left(Z^{4}, G_{B}\right) \rightarrow\left(Z_{1}^{4},-I\right)
$$ from an old homework)

This doesn't happen for all links. Well see why this embedding exists next time.
(Hint: it exists because the knot we started with is slice).

