Dehn Surgery

Dehn Surgery
Closed, connected, oriented 3-mans: $S^{3}, S^{1} \times S^{2}, L(p, q)$, others?

Goal: Construct every closed, oriented, connected 3-man. (using links in S^{3})

Examples:
(1) $S^{3}=[S^{3}-\underbrace{\left(S^{\prime} \times D^{2}\right.}_{v u})] \bigcup_{i d}\left[\left(S^{\prime} \times D^{2}\right]\right.$

$$
\text { (2) } S^{1} \times S^{2}
$$

$T^{2} \cong S^{\prime} \times S^{\prime}$ parametrized by

$$
\begin{aligned}
& (\theta, \omega) \in \mathbb{R}^{2} \quad(\theta ; \omega) \longmapsto\left(e^{2 \pi i \theta}, e^{2 \pi i \omega}\right) \\
& \varphi_{s^{3}}: T^{2} \longrightarrow T^{2} \\
& (\theta, \omega) \mapsto(\omega,-\theta)
\end{aligned}
$$

Q: What manifolds do we get? $A=S^{1} \times S^{2}$

Nontrivial Dehn Surgery on unknot to obtain $S^{1} \times S^{2}$

Surgery on Knots

need homeomorphism $\quad \varphi: T^{2} \rightarrow T^{2}$ to get 3 -man.
Q. What is φ ?

A: Actually, we don't need to knew φ, we just need to know where γ goes, Why?

If we cut T along γ get a B^{3}.

Once we know where φ takes γ, this determines the gluing uniquely since \exists only one way to glue B^{3} to S^{2}.
$Q=$ What could $\varphi(\gamma)$ be?

$\varphi(\gamma)$ could be any simple closed curve but up to isotopy, we can assume

$$
\varphi(\gamma)=p \lambda+q \mu
$$

$\left\{\right.$ embd curres on $\left.T^{2}\right\} \longleftrightarrow Q \cup\{\infty\}$

$$
\gamma=p \lambda+q \mu
$$

$$
\gamma \underset{\text { embd }}{c} T^{2} \Longrightarrow(p, q)=1
$$

Since $p \lambda+q \mu$ is a simple closed curve, we can assume $(p, q)=1$ and p / q is a reduced fraction (or ∞).

The value p / q determined by a curve γ is called it's slope.

A knot and a slope determine a surgery.

Dehn Surgery along K in S^{3} k : a knot $v(K):=$ tubular nbhd of K.

$$
\begin{aligned}
& S_{P / q}^{3}(K):=\left(S^{3}-I_{n} t_{v}(K)\right) \bigcup_{\varphi}\left(S^{\prime} \times D^{2}\right) \\
& \varphi: \partial\left(S^{\prime} \times D^{2}\right) \rightarrow \partial(\sim K)
\end{aligned}
$$

Glue back in along (p, q)-curve, using a twist of $\partial\left(S^{\prime} \times D^{2}\right)$

Ex: In our first two example if λ and μ are as pictured:

$$
S^{3}-v(u)
$$

(1) $S_{1 \%}(u)=S^{3}$
(2) $S_{0 / 1}(u)=S^{1} \times S^{2}$
chosing μ and λ carefully:

μ is always chosen to be $\partial O^{2} \times\{p t\}$ in $\overline{\sim(K)}$

λ is chosen as

$$
\nRightarrow(\mu, \lambda)=1
$$

(all choices are NOT isotopic)

We need to be more careful to agree on choice of λ.

Choose λ so that $k(\lambda, k)=0$ in $N(k)$
$E x:$
(1)

$$
1 k(\lambda, k)=? \quad 3
$$

(2)

λ_{0} has $\operatorname{Ik}\left(\lambda_{0}, k\right)=0$
λ_{0} is called
the D-framed longitude or seifert longitude.

Claim: λ_{0} is the only (up to isotopy) simple closed curve which has

$$
\nRightarrow\left(\lambda_{0}, \mu\right)=+1
$$

and can be pushed to lie in a Seifert Surface for K.

Any other choice intersects
all seifert surfaces of K.

Surgery on links in S^{3}

$$
L=K_{1} \cup K_{2}
$$

$$
S^{3}-v(L)=S^{3}-\left[v\left(K_{1}\right) \cup v\left(K_{2}\right)\right]
$$

Given an n-component link $L \hookrightarrow S^{3}$, we can perform Dehn surgery on L to obtain $L\left(p_{1} / q_{1}, p_{2} / q_{2}, \ldots, p_{n} / q_{n}\right)$ where a torus T_{i} is glued to $\partial\left(v\left(K_{i}\right)\right)$ along the slope p_{i} / q_{i}

Ex: Lens Spaces:

Continued Fraction:

$$
\begin{aligned}
& {\left[r_{1}, r_{2}, \ldots, r_{k}\right]=r_{1}-\frac{1}{r_{2}-\frac{1}{\ddots-\frac{1}{r_{k}}}}=\frac{p}{q}} \\
& r_{i} \geqslant 2 \\
& \Rightarrow \partial X=L(p, q) \\
& \text { Fact: } L(p, q)=S_{-p / q}^{3}(U)
\end{aligned}
$$

Recall: Corollary: Let $(p, q)=1$

where $\frac{p}{q}=r_{1}-\frac{1}{r_{2}-\frac{1}{\ddots-\frac{1}{r_{k}}}}$
Proof: Just slam-dunk (k-1)-times

$$
\begin{aligned}
& L(3,2)=S_{-5 / 2}^{3}(u) \\
& 3-\frac{1}{2}=\frac{5}{2}
\end{aligned}
$$

We can be think the surgery as 2 surgeries on disjoint unknots.

The: Corollary + [Likorish-Wallace]
Any closed, oriented 3-man. can be constructed ria a Dehn surgery on a link in S^{3}. with all surgery corf's being integers.

Fact:
$M=$ Dehn surgery on L
$M^{\prime}=$ Dehn surgery on L^{\prime}

$$
\Rightarrow M \nRightarrow M^{\prime}=
$$

Dehn surgery on LUL'
$E x:$

Q: What does this have to do with our Leman. pictures from before?

From Handle diagrams for 4-man. to Surgery Diagram for 3-man.

Link diagrams with each component labeled with an integer have both meanings
L-dimensionally (handle diagram) and 3-dimensionally (surgery diagram)

Q: How are they related?
A: $\partial X=M$ (as well see)

$$
\begin{aligned}
\partial B^{4} & =S^{3} \\
\partial B^{4} & =\partial\left(B^{2} \times B^{2}\right) \\
& =\left(\partial B^{2} \times B^{2}\right) \cup\left(B^{2} \cup \partial B^{2}\right) \\
& =\left(S^{1} \times B^{2}\right) \cup\left(B^{2} \cup S^{\prime}\right) \\
\Rightarrow S^{3} & =\left(S^{\prime} \times B^{2}\right) \cup_{\varphi}\left(B^{2} \cup S^{\prime}\right)
\end{aligned}
$$

Note: With care, we can figure out what φ is.

Claim:
Let X be a man with decomposition

$$
=A \cup B
$$

where A and B are both manifolds

$$
\Longrightarrow \partial X \cong\left[\partial(A)-\begin{array}{l}
\text { gluing } \\
\text { region }
\end{array}\right] \cup\left[\partial(B)-\begin{array}{l}
\text { gluing } \\
\text { region }
\end{array}\right]
$$

$E x:$

3-dim. handle decomposition

$$
\begin{aligned}
& \partial M=[\partial \underbrace{(0-h)}_{O^{0} \times D^{3}}-\text { overlap }] \cup[\partial \underbrace{(1-h)}_{D^{\prime} \times D^{2}} \text { - overlap }]
\end{aligned}
$$

$$
\begin{aligned}
& U\left[\left(\frac{\partial D^{\circ}}{(0} \times D^{2}\right) \cup\left(O^{\prime} \times \frac{\partial D^{2}}{2}\right)-\underset{\text { region }}{\text { attaching }}\right] \\
& {\left[\left(S^{\prime} \times I\right) \cup\left(D^{2} \times S^{0}\right)\right. \text { disks }} \\
& =[\underbrace{\left(S^{1} \times I\right) \cup\left(D^{2} \times S^{0}\right)}_{S^{2}}-\binom{\text { attaching }}{\text { region }}] \\
& U\left[\left(\begin{array}{ll}
\{ & p+\cdot \\
& \} \times D^{2}\right) \cup\left(D^{\prime} \times S^{\prime}\right)\left[\begin{array}{c}
2 \text { attaching } \\
\text { region }
\end{array}\right]
\end{array}\right]\right. \\
& =\left[S^{2}-\underset{\text { region }}{\text { attaching }}\right] \cup\left[D^{\prime} \times S^{\prime}\right] \\
& =\text { cylinder } \bigcup_{\varphi} \text { cylinder }=\text { torus }
\end{aligned}
$$

$E X: X=$

$$
\begin{aligned}
& \partial(x)=[\partial(0-h) \text {-overlap }] \cup[\partial(2-h)-\text { overlap }]
\end{aligned}
$$

$$
\begin{aligned}
& \cup\left[\left(\partial\left(D^{2}\right) \times D^{2}\right) \cup\left(\partial^{2} \times \partial\left(D^{2}\right)\right)-\begin{array}{l}
\text { attaching } \\
\text { region }
\end{array}\right] \\
& =\left[S^{3}-\underset{\text { attaching }}{\text { region }}\right] \cup\left[\left(S^{\prime} \times D^{2}\right) \cup\left(D^{2} \times S^{\prime}\right)-\begin{array}{c}
\text { attaching } \\
\text { region }
\end{array}\right] \\
& =\left(s^{3}-v K\right) \bigcup_{\varphi}\left(D^{2} \times s^{1}\right)
\end{aligned}
$$

So ∂X is certainly a Dehn Surgery.
But what is the framing?

The two orange regions will be identified. How?

φ is determined by where A goes, which is what is encoded by the framing.
"n" framing $\Rightarrow 1 k(\varphi(\lambda), K)=\Pi$

We keep track of the identification, but note that the arenge regions are not part of the boundary.

To determine our surgery coeff, we need to understand where the meridian of the complementary purple torus goes under φ.
But note that the mendian of the purple $S^{\prime} \times D^{2}$ is isotopic to λ.

Thus, $I^{k}(\mu, K)=\cap \quad$ also.
This is equiv, to performing n -surgery.

So, we prove that
Proposition:

$$
\partial\left(\begin{array}{l}
2-h \\
\text { with framing "n" } \cup D^{4} \\
\text { along } k
\end{array}\right) \cong S_{n}^{3}(K)
$$

Similarly

$$
\begin{aligned}
& \partial\left(\bigcup_{i=1}^{m}\left(\begin{array}{l}
2-h \\
\text { with framing " } n_{i} " \\
\text { along } K_{i}
\end{array}\right) \cup B^{4}\right) \\
& \simeq S_{n, n_{2}, \ldots, n_{k}}^{3}\left(K_{1}, K_{2}, \ldots, K_{m}\right)
\end{aligned}
$$

The:
$L_{1} L^{\prime}: Q$-framed links which determine 3-man as surgery

If $S^{3}(L) \xlongequal[\uparrow]{\cong} S^{3}\left(L^{\prime}\right)$ orient- pres.
$\Rightarrow L$ and L^{\prime} can be related by

- Rolfsen twist (and undoing them)
- Adding/Removing components framed by ∞
- Isotopy

Note: Nice tho.
In principle, can recover all surgery diagrams producing a given 3 -man but not very useful in practice.

