Let Q be a nondegenerate symmetric bilinear form
Recall, if
$$Z = \overline{1}e_{13} - 7e_{13}$$
 is the standard basis and $B = \overline{1}b_{13} - 5b_{13}$
is another basis of Z^{7} ,
then $Q_{B} = \overline{P}Q_{E}P$ where $P = [b_{1} - -b_{n}]$

Moreover, given $v = \sum_{i=1}^{n} v_i e_i \in \mathbb{Z}^n$, we can express v in the B basis: $v = \sum_{i=1}^{n} v_i' b_i$. That is, $[v]_{\mathfrak{s}} = \begin{bmatrix} v_i \\ v_n \end{bmatrix}$ and $[v]_{\mathfrak{b}} = \begin{bmatrix} v_i \\ v_n \end{bmatrix}$ Now $P[v]_{\mathfrak{b}} = [b_i - b_n] \begin{bmatrix} v_i' \\ v_n \end{bmatrix} = \sum_{i=1}^{n} v_i' b_i = \sum_{i=1}^{n} v_i e_i = [v]_{\mathfrak{s}}$ Hence the map $\varphi_i \mathbb{Z}^n \longrightarrow \mathbb{Z}^n$ bransforms $[v]_{\mathfrak{b}}$ into $[v]_{\mathfrak{s}}$ $\varphi(v) = Pv$

So we can view changing basis from B to
$$\Sigma$$
 as the map φ
Claim: φ gives rise to a lattice isomorphism
 $\varphi:(Z^{1},Q_{B}) \longrightarrow (Z^{2},Q_{E})$ (i.e. a surjective lattice embedding)

Def: A symmetric bilinear form Q is diagonalizable over Z
if
$$\exists$$
 a basis B of Zⁿ such that QB is diagonal
(i.e. \exists matrix P s.t. P^TQ_EP is diagonal)

Ex: Let Q be given by
$$Q_{s} = \begin{bmatrix} -1 & | \\ | \\ | \\ let B = \begin{bmatrix} [-1], [-1] \\ 0 \\ 0 \\ 2 \end{bmatrix}, P = \begin{bmatrix} -1 & 0 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$
 is diagonal
 \Rightarrow Q is diagonalizable.

Fact: Let Q be diagonalizable with
$$|detQ|=|$$

•Q is positive definite $\iff \exists$ basis B such that $Q_B=I$
•Q is negative definite $\iff \exists$ basis B such that $Q_B=-I$

So by the Key observation:

• A positive definite lattice $(2^n, Q)$ with det Q = 1is diagonalizable iff \exists lattice isomorphism $\mathcal{Y}: (2^n, Q) \longrightarrow (2^n, I)$ • A negative definite lattice $(2^n, Q)$ with |det Q| = 1is diagonalizable iff \exists lattice isomorphism $\mathcal{Y}: (2^n, Q) \longrightarrow (2^n, I)$

EX:
$$Q = \begin{bmatrix} -2 & 3 \\ 3 & -5 \end{bmatrix}$$

Note: $det Q = 1$
 $eigenvalues$ both negative \Rightarrow negative definite
We can show Q is diagonalizable by finding
 a lattice isomorphism $\varphi: (2^2, Q) \longrightarrow (2^2, -I)$
As previously, let $\widehat{1}f_{11}, \widehat{1}_{2}$ be the standard basis
of the domain and let $\widehat{1}e_{11}, e_{13}$ be the
Standard basis of the codomain.

$$\begin{aligned} & \text{let} \quad \varphi(f_{i}) = \chi_{i} e_{i} + \chi_{2} e_{2} \quad \text{and} \quad \varphi(f_{2}) = g_{i} e_{i} + g_{2} e_{2}, \\ & \text{-}2 = Q(f_{11}f_{1}) = -I\left(\varphi(f_{1}), \varphi(f_{1})\right) = -\begin{bmatrix}\chi_{1}\\\chi_{2}\end{bmatrix} \cdot \begin{bmatrix}\chi_{1}\\\chi_{2}\end{bmatrix} = -\chi_{1}^{2} - \chi_{2}^{2} \\ & \Rightarrow \quad \chi_{1}, \chi_{2} \in [\pm 1] \\ & \text{-}5 = Q(f_{2}f_{2}) = -I\left(\varphi(f_{1}), \varphi(f_{2})\right) = -g^{2} - g^{2} \\ & \Rightarrow \quad (g_{11}g_{2}) \in [(\pm 1, \pm 2), (\pm 2, \pm 1)] \\ & \text{-}8 = Q(f_{11}f_{2}) = -I\left(\varphi(f_{1}), \varphi(f_{2})\right) = -\chi_{1}g_{1} - \chi_{2}g_{2} \end{aligned}$$

Setting
$$X_1 = X_2 = 1$$
 and $Y_1 = -2$, $Y_2 = -1$ satisfies the equations
 \implies We have a lattice embedding
given by $Q(f_1) = e_1 + e_2$,
 $Q(f_2) = -2e_1 - e_2$

$$\Rightarrow \varphi \text{ is given by } P = \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix}$$

In the basis $\{\varphi(f_i), \varphi(f_2)\}, \text{ we have}$
$$Q_B = P^T Q_E P = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \text{ is diagonal}$$