Exam 3 Solutions

- 1. Let $\mathbf{F} = \sin(\pi y)\mathbf{i} + 3xyz\mathbf{j} + z\mathbf{k}$
 - (a) Compute the divergence of \mathbf{F} at (1, 0, -1).

Solution:

div
$$\mathbf{F} = \frac{\partial}{\partial x} (\sin(\pi y)) + \frac{\partial}{\partial y} (3xyz) + \frac{\partial}{\partial z} (z) = 3xz + 1$$

div $\mathbf{F}(1, 0, -1) = -2$.

(b) Compute the curl of ${\bf F}$ at (1,0,-1)

Solution:

$$\operatorname{curl} \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ \sin(\pi y) & 3xyz & z \end{vmatrix} = (-3xy, 0, 3yz - \pi \cos(\pi y))$$
$$\operatorname{curl} \mathbf{F}(1, 0, -1) = (0, 0, -\pi)$$

(c) Sketch a vector field in \mathbb{R}^2 whose divergence at the origin is positive.

Solution:

2. Compute $\int_C \mathbf{F} \cdot d\mathbf{s}$, where $\mathbf{F}(x, y) = x^2 \mathbf{i} - xy \mathbf{j}$ and C is the portion of the graph of y = 2x from (0, 0) to (1, 2).

Solution: We can parametrize C by $\mathbf{c}(t) = (t, 2t), 0 \le t \le 1$. Thus $\mathbf{c}'(t) = (1, 2)$. Thus

$$\int_C \mathbf{F} \cdot d\mathbf{s} = \int_0^1 \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) \, dt = \int_0^1 (t^2, -2t^2) \cdot (1, 2) \, dt = \int_0^1 -3t^2 \, dt = -1$$

3. Let $\mathbf{F} = (\sin(xy) + xy\cos(xy))\mathbf{i} + (x^2\cos(xy))\mathbf{j}$.

(a) \mathbf{F} is conservative. Explain why.

Solution: Let $P(x, y) = \sin(xy) + xy\cos(xy)$ and $Q(x, y) = x^2\cos(xy)$. Then $\frac{\partial P}{\partial y} = 2x\cos(xy) - x^2y\sin(xy)$ and $\frac{\partial Q}{\partial x} = 2x\cos(xy) - x^2y\sin(xy)$. Since $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ and **F** is C^1 on all of \mathbb{R}^2 , which is simply connected, **F** is conservative.

(b) Compute the line integral of **F** along the closed curve C given by $x^2 + y^2 = 1$ with the counterclockwise orientation. (Hint: Use part (a))

Solution: Since **F** is conservative and *C* is closed, $\int_C \mathbf{F} \cdot d\mathbf{s} = 0$, by the fundamental theorem of line integrals.

4. Let S be the surface parametrized by $\mathbf{r}(u, v) = (u, v, u^2 + v^2)$, where $u^2 + v^2 \leq 1$.

(a) Calculate
$$\iint_{S} \mathbf{F} \cdot d\mathbf{S}$$
, where $\mathbf{F} = -x\mathbf{i} - y\mathbf{j} - z\mathbf{k}$.

Solution: $\mathbf{r}_u = (1, 0, 2u)$ and $\mathbf{r}_v = (0, 1, 2v)$. Thus $\mathbf{r}_u \times \mathbf{r}_v = (-2u, -2v, 1)$. Therefore,

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F}(u, v, u^{2} + v^{2}) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \, du \, dv$$
$$= \iint_{D} (-u, -v, -u^{2} - v^{2}) \cdot (-2u, -2v, 1) \, du \, dv = \iint_{D} u^{2} + v^{2} \, du \, dv$$

Switching to polar coordinates, we have

$$\iint_{D} u^{2} + v^{2} \, du \, dv = \int_{0}^{2\pi} \int_{0}^{1} (r^{2}) r \, dr \, d\theta = \frac{\pi}{2}$$

(b) Notice that S is a portion of the graph of $z = x^2 + y^2$, which has a bowl shape. Does the orientation of S point into the bowl or out of the bowl? Explain your reasoning.

Solution: We have to determine which direction the normal vectors $\mathbf{r}_u \times \mathbf{v} = (-2u, -2v, 1)$ point. When u = 0 and v = 0, $\mathbf{r}_u \times \mathbf{v}(0, 0) = (0, 0, 1)$. This occurs at $\mathbf{r}(0, 0) = (0, 0, 0)$ and is depicted below.

Since this vector points into the bowl, the orientation points into the bowl.

5. (a) Let $C \subset \mathbb{R}^2$ be a flow line of the vector field **F** depicted below.

Is the work done by ${\bf F}$ in moving a particle along C positive, negative, or zero? Explain your reasoning.

Solution: The work done is positive, since the flow of \mathbf{F} is moving in the same direction as the orientation of C.

(b) Consider the surface S and vector field \mathbf{F} in \mathbb{R}^3 depicted below.

Suppose S has the leftward-pointing orientation. Is the flux of \mathbf{F} through S positive, negative or zero? Explain your reasoning.

Solution: The flux is negative, since the flow of \mathbf{F} is moving against the orientation of S.