Exam 3 Solutions

1. Let $\mathbf{F}=\sin (\pi y) \mathbf{i}+3 x y z \mathbf{j}+z \mathbf{k}$
(a) Compute the divergence of \mathbf{F} at $(1,0,-1)$.

Solution:

$\operatorname{div} \mathbf{F}=\frac{\partial}{\partial x}(\sin (\pi y))+\frac{\partial}{\partial y}(3 x y z)+\frac{\partial}{\partial z}(z)=3 x z+1$
$\operatorname{div} \mathbf{F}(1,0,-1)=-2$.
(b) Compute the curl of \mathbf{F} at $(1,0,-1)$

Solution:

$\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ \sin (\pi y) & 3 x y z & z\end{array}\right|=(-3 x y, 0,3 y z-\pi \cos (\pi y))$
$\operatorname{curl} \mathbf{F}(1,0,-1)=(0,0,-\pi)$
(c) Sketch a vector field in \mathbb{R}^{2} whose divergence at the origin is positive.

Solution:

2. Compute $\int_{C} \mathbf{F} \cdot d \mathbf{s}$, where $\mathbf{F}(x, y)=x^{2} \mathbf{i}-x y \mathbf{j}$ and C is the portion of the graph of $y=2 x$ from $(0,0)$ to $(1,2)$.

Solution: We can parametrize C by $\mathbf{c}(t)=(t, 2 t), 0 \leq t \leq 1$. Thus $\mathbf{c}^{\prime}(t)=(1,2)$. Thus

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=\int_{0}^{1} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t) d t=\int_{0}^{1}\left(t^{2},-2 t^{2}\right) \cdot(1,2) d t=\int_{0}^{1}-3 t^{2} d t=-1
$$

3. Let $\mathbf{F}=(\sin (x y)+x y \cos (x y)) \mathbf{i}+\left(x^{2} \cos (x y)\right) \mathbf{j}$.
(a) \mathbf{F} is conservative. Explain why.

Solution: Let $P(x, y)=\sin (x y)+x y \cos (x y)$ and $Q(x, y)=x^{2} \cos (x y)$. Then $\frac{\partial P}{\partial y}=2 x \cos (x y)-x^{2} y \sin (x y)$ and $\frac{\partial Q}{\partial x}=2 x \cos (x y)-x^{2} y \sin (x y)$. Since $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ and \mathbf{F} is C^{1} on all of \mathbb{R}^{2}, which is simply connected, \mathbf{F} is conservative.
(b) Compute the line integral of \mathbf{F} along the closed curve C given by $x^{2}+y^{2}=1$ with the counterclockwise orientation. (Hint: Use part (a))

Solution: Since \mathbf{F} is conservative and C is closed, $\int_{C} \mathbf{F} \cdot d \mathbf{s}=0$, by the fundamental theorem of line integrals.
4. Let S be the surface parametrized by $\mathbf{r}(u, v)=\left(u, v, u^{2}+v^{2}\right)$, where $u^{2}+v^{2} \leq 1$.
(a) Calculate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=-x \mathbf{i}-y \mathbf{j}-z \mathbf{k}$.

Solution: $\mathbf{r}_{u}=(1,0,2 u)$ and $\mathbf{r}_{v}=(0,1,2 v)$. Thus $\mathbf{r}_{u} \times \mathbf{r}_{v}=(-2 u,-2 v, 1)$. Therefore,

$$
\begin{aligned}
& \iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F}\left(u, v, u^{2}+v^{2}\right) \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v \\
& =\iint_{D}\left(-u,-v,-u^{2}-v^{2}\right) \cdot(-2 u,-2 v, 1) d u d v=\iint_{D} u^{2}+v^{2} d u d v
\end{aligned}
$$

Switching to polar coordinates, we have

$$
\iint_{D} u^{2}+v^{2} d u d v=\int_{0}^{2 \pi} \int_{0}^{1}\left(r^{2}\right) r d r d \theta=\frac{\pi}{2}
$$

(b) Notice that S is a portion of the graph of $z=x^{2}+y^{2}$, which has a bowl shape. Does the orientation of S point into the bowl or out of the bowl? Explain your reasoning.

Solution: We have to determine which direction the normal vectors $\mathbf{r}_{u} \times \mathbf{v}=$ $(-2 u,-2 v, 1)$ point. When $u=0$ and $v=0, \mathbf{r}_{u} \times \mathbf{v}(0,0)=(0,0,1)$. This occurs at $\mathbf{r}(0,0)=(0,0,0)$ and is depicted below.

Since this vector points into the bowl, the orientation points into the bowl.
5. (a) Let $C \subset \mathbb{R}^{2}$ be a flow line of the vector field \mathbf{F} depicted below.

Is the work done by \mathbf{F} in moving a particle along C positive, negative, or zero? Explain your reasoning.

Solution: The work done is positive, since the flow of \mathbf{F} is moving in the same direction as the orientation of C.
(b) Consider the surface S and vector field \mathbf{F} in \mathbb{R}^{3} depicted below.

Suppose S has the leftward-pointing orientation. Is the flux of \mathbf{F} through S positive, negative or zero? Explain your reasoning.

Solution: The flux is negative, since the flow of \mathbf{F} is moving against the orientation of S.

