Handlebody Decomposition
\qquad
\qquad
\qquad 1

Handle Decomposition
Tho: Every manifold admits a handle decomposition.
n-dim. k-handle: $h_{k}^{n}:=D^{k} \times D^{n-k}$ Attach $(k+1)$-handles to k-handles.

attaching sphere
attaching region: $\partial D^{k} \times D^{n-k}$
core: $D^{k} \times\{0\}$
attaching sphere: ∂ (core) $=\partial 0^{k} \times\{0\}=S^{k-1} \times\{0\}$
cocore: $\{0\} \times D^{n-k}$
belt sphere: $\{0\} \times \partial\left(D^{n-k}\right)=\{0\} \times S^{n-k-1}$

1-manifolds
$\left.\begin{array}{|l|c|c|}\hline & \theta \text {-hanelle } & \text { I-handle } \\ \hline & \begin{array}{c}D^{0} \times D^{\prime} \\ D^{\prime}=[0,1]\end{array} & D^{\prime} \times D^{0} \\ & \text { cocore }\end{array}\right\}$

2-manifolds: Surfaces
Well only need 2-dimensional handles

	θ-handle	1 -handle	2 -handle

$E x=S^{2}$

$$
S^{2}=h_{0} \cup h_{2}
$$

$$
x\left(s^{2}\right)=1-o+1=2
$$

Ex: Annulus $=S^{\prime} \times I$

Annulus $=S^{\prime} \times I$

$$
X(A)=1-2+1=0
$$

Ex: Möbius Band
 \simeq

$$
\chi(M B)=L-1-0=0
$$

$$
x(s)=\# \underbrace{\# \text {-handles }} \neq \underbrace{\text { l-handles }}+\# 2 \text {-handles }
$$

3-manifolds

Ex: S^{3}

$$
s^{3}=0-h \cup 3-h
$$

EX:

4-manifolds:

Remarks
(1) 1-handles must be attached to

$$
\begin{aligned}
& \partial(\theta \text {-handle })=\partial\left(D^{0} \times D^{4}\right) \\
& =\left(\partial D^{0} \times D^{4}\right) \cup\left(D^{0} \times 2 D^{4}\right) \\
& =\varnothing \cup\left(D^{0} \times S^{3}\right)=D^{0} \times S^{3} \\
& =S^{3}=\mathbb{R}^{3} \cup\{\infty\}
\end{aligned}
$$

The attaching region of the 1-handle:

$$
\partial D^{1} \times D^{3}=S^{0} \times D^{3}
$$

Think" wamhole
(2) The attaching region of 2-handle:

$$
\partial D^{2} \times D^{2}=S^{1} \times D^{2}
$$

Attaching circle: $S^{\prime} \times\{0\}$

Data needed for a 2-handle attachment:
(1) Attaching circle (can be knots)
(2) Framing: How do we glue the attaching region $S^{1} \times D^{2}$ to a noble of the knot in $\partial B^{4}=s^{3}$ There are \mathbb{E}-many ways to do this.

Diagram in S^{3}

$E X$: Some blue prints for 4-man.s

Ex:Some well-known 4-man.s $S^{4}=O$-handle \cup L-handle $S^{\prime} \times S^{2}=0-h \cup \alpha-h \cup 3-h \cup 4-h$

Remork:
All 3-mans are boundaries of Le-man.S. without I-OR 3-handles.

Let X be a 4-man with bodry which is build from
0 -and 2 -handles.

Then this diagram can also be viewed as a surgery diagram for ∂X

means
remove $v(K)$ (tubular nbhd) from S^{3} replace it with $S^{\prime} \times D^{2}$ in a certain way
(adding some twist on $\frac{\partial\left(S^{\prime} \times D^{2}\right)}{S^{\prime} \times S^{\prime}=T^{2}}$

$$
s^{\prime} \times s^{1}=T^{2}
$$

(drilling and filling)
this is called "Dehn Surgery (later)

