Intro to Homology
\qquad
\qquad
\qquad 1

Big-Picture: Homology is an algebraic topological gadget defined for a topological space.

It is an invariant under homeomorphism actually under homotopy.
homotopy: $\exists H=X \times[0,1] \longrightarrow Y$ sit.

$$
\begin{aligned}
& H(x, 0)=f(x) \\
& H(x, 1)=g(x)
\end{aligned}
$$

X and Y homotopic (homotopy equivalent)
If $\exists f: X \rightarrow Y$ and $\exists g: Y \rightarrow X$ st. $g \circ f \simeq i d x$

$$
f_{\circ g} \simeq i d y
$$

Intrutively, homotopy allows bending, shrinking, expanding (doesnit need to be injective OR surjective.) Examples:

(2) $A \simeq$

(3)

$$
\text { (4) } B^{n} \cong \cdot
$$

This will be usefull since to compute homology, we can consider a simpler manifold homotopic to X, which has the same homology but easier to compute.

Cell Decomposition:
These are the building blocks for cellular homology. cell complex (CW-complex) A topological space made up of pieces, called skeletons, together with a gluing restriction.
cells:
O-cell: a point
1-cell : an interval $[0,1]$
2-cell: a disk

$$
n \text {-cell: } B^{n}
$$

Skeletons:
O-skeleton: $=X^{0}$: Finite union of θ-cells. 1-skeleton:=$X^{1}:=X^{0} \bigcup_{\varphi}(1-\text { cells })^{\text {some number of }}$ $\partial([0,1])$ must be glued to X^{0}

$$
\varphi: \partial([0,1]) \longrightarrow X^{0}
$$

$$
\text { Ex: } \stackrel{\square}{\square}
$$

$$
\begin{gathered}
\text { 2-skeleton }:=X^{2}:=X^{1} \bigcup_{\varphi}^{\text {some number of }} 2 \text {-cells }
\end{gathered}
$$

Ex:

unnecessary badly behaved

$$
\text { n-skeleton: }=X^{n}:=X^{n-1} \bigcup_{\varphi_{i}}^{\text {some }} \text { n-cells }
$$

$$
\varphi: \partial B_{i}^{n} \rightarrow X^{n-1}
$$

Remark: $X=X^{0} \cup X^{1} \cup X^{2} \cup \ldots$ can go forever but well consider n-dim mans. In that case, we don't add any cells after the n-th stage. i.e. $x^{n}=x^{n+1}=x^{n+2}=\cdots$

Examples:
(1) (a)

(b)

(2)

$$
\begin{aligned}
& \text { (2) } S^{n}=\underbrace{\frac{0-\text { cell }}{x^{0}} U_{\varphi}^{n \text {-cell }}}_{x^{n}} \\
& \varphi=\partial B^{n} \longrightarrow\{p+\} \\
& X^{0}=x^{1}=x^{2}=\cdots=x^{n-1}
\end{aligned}
$$

No k-cell for $1<k<n$

$$
S^{\prime}: \underset{x^{\circ}}{\stackrel{\theta-c e \| l}{\curvearrowleft}} \stackrel{\curvearrowleft}{1-c e \| l} \Rightarrow D_{s^{\prime}}
$$

$\left.s^{2}: \underset{0-c \mathrm{~L}}{\infty} \mathbb{L} / 11\right) \Rightarrow s^{2}$
(3) $\mathbb{R} \mid p^{2}$

$$
O R
$$

(4) 0

Euler Characteristic $X=a$ (finite) cell-complex

$$
\Rightarrow x(x)=\sum_{i=0}^{n}(-1)^{n} \nRightarrow(i \text { cell of } x)
$$

where n is the smallest number sit.

$$
x^{n}=x^{n+1}=x^{n+2}=\cdots
$$

If X is a man. $n=\operatorname{dim}(X)$

$$
\chi(x)=\sum_{i=1}^{n}(-1)^{n} \operatorname{rank}\left(H_{n}(x, z)\right)
$$

$H_{n}(x, z)=\mathbb{z}^{k} \oplus$ torsion

$$
\operatorname{rank}\left(H_{n}(X, \mathbb{Z})\right)=\# \mathbb{Z} \text { summands. }
$$

Examples:
(1)
©

-
1 - -cell
$\longrightarrow 1$ |-cell

$$
x(x)=1-1=0
$$

(b)

$$
x(x)=2-2=0
$$

(2) s^{n}
$n=2 i \quad 1 \quad 0$-cell

In general for S^{n}

- 1 cell
(1/.) $0^{n} 1$ n-cell

$$
\Rightarrow x\left(S^{n}\right)=\left\{\begin{array}{lll}
2 & \text { if } & n=\text { even } \\
0 & \text { if } & n=\text { odd }
\end{array}\right.
$$

(3) $\| R P^{2}$

I O-cell
\perp I-cell $O R$
1 2-cell
or

2 O-cells
2 1-cells
$\perp 2$-cell

$$
\begin{aligned}
& x\left(\mathbb{R} \mid \mathbb{P}^{2}\right)=1-1+1=1 \\
& x\left(\mathbb{R} \mid \mathbb{P}^{2}\right)=2-2+1=1
\end{aligned}
$$

(4)

$1 \quad \theta$-cell
2 1-cells
1 2-cell

$$
X\left(T^{2}\right)=1-2+1=0
$$

Homology is a stronger inv, than Euler characteristic. It is an alg. gadget which counts $\# n$-dim. holes.

Alg -gadget: the homology of a topological space will be a series of abelian groups $H_{n}(X)$ one for each $n \in \mathbb{Z}$

Chain Complex

$$
\xrightarrow{d_{3}} c_{3} \xrightarrow{d_{2}} C_{2} \xrightarrow{d_{1}} C_{1} \xrightarrow{d_{0}} C_{0}^{d_{1}} C_{-1} \rightarrow
$$

d_{i} : homomorphisms
C_{i} : abelian groups sit.

$$
\operatorname{Im}\left(d_{i}\right) \subset \operatorname{Ker}\left(d_{i-1}\right)
$$

$* \Leftrightarrow d_{i-1} \circ d_{i}=0$
Notation: Often well drop the subscripts of d_{i} 's since it is usually clear which d_{i} we are interested in.
So $d^{2}=0$

Our chain complex will be defined in terms of topology:
$C_{i}(x)=$ cell complexes
$C_{i}(x)=$ the (abelian) group of "formal sums" of (oriented) i-cells in X.

These sums can be taken with coefficients in \mathbb{Z} (usually), $Q \quad O R \quad I R \quad($ or even wilder coefficients)

What is the map d?

$$
\begin{aligned}
& C_{i} \xrightarrow{d_{i-1}} C_{i-1} \\
& d_{i-1}(i-c e l l)=\sum \begin{array}{l}
\text { oriented } \\
\begin{array}{l}
\text { i-1)-cells } \\
\text { making up } \\
\text { boundary } \\
\text { the } i-c e l l
\end{array}
\end{array}
\end{aligned}
$$

Then extend this to $C_{i}(x)$ to make d_{i-1} a homomorphism
Remark: This defn is correct enough for our purposes but really need the notion of degree of maps of sphere to make this rigorous.

Examples:
(1) a

$$
\begin{aligned}
& C_{0}(x)=\{n \cdot v: n \in \mathbb{Z}\}=\langle v\rangle \cong \mathbb{Z} \\
& C_{1}(x)=\{n \cdot e: n \in \mathbb{Z}\}=\langle e\rangle \cong \mathbb{Z} \\
& C_{i}(x)=\{n \cdot 0: n \in \mathbb{Z}\}=0 \quad \forall i \geqslant 2 \\
& \cdots \xrightarrow{d_{0}=0} C_{2} \xrightarrow{d_{1}=0} C_{11} \xrightarrow{d_{0}} C_{0} \xrightarrow{d_{1}=0} C_{11} \\
& 0 \quad\langle e\rangle \quad\langle v\rangle \\
& \quad\langle\longmapsto v-v=0
\end{aligned}
$$

Note: This chain complex is NOT an invariant of X.
chainging cell decomposition can change $C_{n}(x)$

$$
\begin{aligned}
& H_{k}(x)=0 \quad \forall i \leq-1 \\
& H_{0}(x)=\operatorname{ker}\left(d_{-1}\right) / \operatorname{Im}\left(d_{0}\right)=\langle v\rangle / 0 \cong \mathbb{Z} \\
& H_{1}(x)=\operatorname{ker}\left(d_{0}\right) / \operatorname{Im}\left(d_{1}\right)=\langle e\rangle / 0 \cong Z \\
& H_{2}(x)=\operatorname{ker}\left(d_{1}\right) / \operatorname{Im}\left(d_{2}\right)=0 / 0=0 \\
& H_{k}(x)=0 \quad \forall \quad k \geqslant 2 \\
& H_{k}\left(S^{\prime}\right)= \begin{cases}\mathbb{Z} & \text { if } k=0, L \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(b)

Orientation?
Assume our orientation on x_{1} and v_{2} so that

- If a l-cell comes out of v_{i}
that corr. to a "t" count
- If a l-cell is going in u_{i} that corr to a "-" count.

$$
\begin{aligned}
& \operatorname{Im}\left(d_{0}\right)=\left\langle v_{2}-v_{1}\right\rangle \Leftarrow \begin{array}{l}
e_{1} \xrightarrow{d_{0}} v_{2}-v_{1} \\
e_{2} \xrightarrow{d_{0}} v_{2}-v_{1}
\end{array}
\end{aligned}
$$

This is all we need to extend to all of $C_{1}=\left\langle e_{1}, e_{2}\right\rangle$

$$
\begin{aligned}
& d_{i}=0 \quad \text { if } i \neq 0 \\
& \operatorname{ker}\left(d_{0}\right)=\left\langle e_{1}-e_{2}\right\rangle
\end{aligned}
$$

since $d_{0}\left(e_{1}-e_{2}\right)=d_{0}\left(e_{1}\right)-d_{0}\left(e_{2}\right)$

$$
=v_{2}-v_{1}-\left(v_{2}-v_{1}\right)=0
$$

and all elements in C_{1} goint to 0 can be written as $k\left(e_{1}-e_{2}\right)$.

$$
\begin{aligned}
& H_{k}(x)=0 \quad \forall i \leq-1 \\
& H_{0}(x)=\operatorname{ker}\left(d_{-1}\right) / \operatorname{Im}\left(d_{0}\right)=\left\langle v_{1}, v_{2}\right\rangle /\left\langle v_{2}-v_{1}\right\rangle \\
& =\left\langle v_{1}, v_{2}-v_{1}\right\rangle\left\langle\left\langle v_{2}-v_{1}\right\rangle \cong\left\langle v_{1}\right\rangle \cong \mathbb{Z}\right. \\
& H_{1}(x)=\operatorname{ker}\left(d_{0}\right) / \operatorname{Im}\left(d_{1}\right)=\left\langle e_{1}-e_{2}\right\rangle / O \cong Z \\
& H_{2}(x)=\operatorname{ker}\left(d_{1}\right) / \operatorname{Im}\left(d_{2}\right) \cong 0 / 0 \cong 0 \\
& H_{k}(x)=0 \quad \forall \quad k \geqslant 2 \\
& H_{k}\left(S^{\prime}\right)= \begin{cases}\mathbb{Z} & \text { if } k=0, L \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(2) $S^{2}=\underset{v}{0} \underset{f}{\text {-cell }} \underset{f}{2}$

$$
\begin{aligned}
& H_{k}\left(s^{2}\right)=0 \quad \forall i \leq-1 \\
& H_{0}\left(s^{2}\right)=\operatorname{ker}\left(d_{-1}\right) / \operatorname{Im}\left(d_{0}\right)=0 / 0=0 \\
& H_{1}\left(s^{2}\right)=\operatorname{ker}\left(d_{0}\right) / \operatorname{Im}\left(d_{1}\right)=0 / 0=0
\end{aligned}
$$

$$
\begin{aligned}
& H_{2}\left(S^{2}\right)=\operatorname{ker}\left(d_{1}\right) / \operatorname{Im}\left(d_{2}\right)=\langle p\rangle / 0 \cong \mathbb{Z} \\
& H_{3}\left(S^{2}\right)=\operatorname{ker}\left(d_{2}\right) / \operatorname{Im}\left(d_{3}\right)=0 / 0=0 \\
& \vdots \\
& H_{k}\left(S^{2}\right)=0 \quad \forall k \geqslant 3 \\
& \Rightarrow H_{k}\left(S^{2}\right)= \begin{cases}\mathbb{Z} & \text { if } k=0,2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(3) $\|R\|^{2}$

$$
H_{n}\left(\mathbb{R} \mid \mathbb{P}^{2}\right)=? \quad H W
$$

Homology
Note that the chain complex is NOT an inv. of X.
Chainging the cell decomposition can change $C_{n}(X)$
There is an alg. trick to make this an inv.

$$
\begin{gathered}
C_{i} \rightarrow H_{i} \\
H_{i}(x)=\operatorname{ker}\left(d_{i-1}\right) / \operatorname{Im}\left(d_{i}\right)
\end{gathered}
$$

Terminology
An element in $H_{k}(x)$ is an equivalence class of k-cells.
ie. if C is a k-cell
[c] is some element in $H_{k}(x)$ the equivalence class of C It may be trivial.
You can actually think of

- elements in H_{1} as closed curves.
- elements in H_{2} as surfaces

Facts:
(1) Homology is a homotopy inv. and doesn't depend on the choice of cell decomposition.
(2) Homology is also a homes inv. (by (D)
homes \Rightarrow homotopic
(3) A homeomorphism (and homotopy equiv.)

$$
f=X \rightarrow Y
$$

induces isomorphisms

$$
f_{*}: H_{n}(x) \longrightarrow H_{n}(y)
$$

Ex: Is φ a homeomorphism?

Solution

$$
\varphi_{+}(l)=[2 l]
$$

not an isom.

So, l is NOT a homed.

