Practice Problems
1.) Consider the bases \mathcal{E} and $B=\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}$ of Z^{3} Let $Q: Z^{3} \times Z^{3} \rightarrow \mathbb{Z}$ be the symmetric bilinear form given by $Q\left(\left[\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right],\left[\begin{array}{l}x_{2} \\ y_{2} \\ z_{2}\end{array}\right]\right)=x_{1} x_{2}-y_{1} y_{2}+z_{1} z_{2}$

Write down matrix representations of Q in each basis
2.) Show that if Q is positive or negative definite, then Q is nondegenerate
3.) Show that if Q is positive/negative definite, then the diagonal entries of Q_{B} are positive/negative for any basis B.
4.) Show that if Q is positive/negative definite, then the eigenvalues of Q_{B} are positive/negative for any basis B.
(Note: the converse is also true)

