Practice Problems

1.) Let
$$Q = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$$
.
We know $\not\exists$ lattice embedding $(Z^2, Q) \rightarrow (Z^2, -1)$.
Does \exists a lattice embedding $\varphi:(Z^2, Q) \rightarrow (Z^2, -1)$?
If so, Sketch Imq.

2.) Let
$$Q = \begin{bmatrix} -n & 1 \\ 1 & -2 \end{bmatrix}$$
. For what values of $n \ge 2$ does there exist a lattice embedding $\varphi: (Z^2, Q) \to (Z^2, -1)$? For at least one of lattice embeddings, sketch the Sublattice Imp CZ^2 .

*3.) Let
$$Q = \begin{bmatrix} -n & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}$$
 be an $(m+1) \times (m+1)$ matrix.

For which values of $n \ge 2$ does there exist a lattice embedding $\varphi: (Z^{m+1}, Q) \longrightarrow (Z^{m+1}, -I)$