Practice Problems
1.) Show that the following Knots are slice (by hand or using KLO):
$8_{8}, 89,820$ (see pictures on Knot info)
Feel free to also try:

$$
a_{27}, 9_{41}, 9_{46}, 10_{3}, 10_{22,}, 10_{35}, 10_{42}, 10_{48}, 10_{75}, 10_{87}, 10_{99}, 10_{232}, 10_{129}, 10_{137}, 10_{140}, 100_{153}, 10_{155}
$$

2.) For a $k n o t ~ K$, let $-k$ denote its mirror image. Show that $K \#-K$ is slice for $K=(1)$ (Note: This is true for all Knots)
3.) Let $L_{k}=$

Where $=m=$ is $\overbrace{x \cdots \lambda}^{m}$ and $=\sqrt[m z]{m}$ is
a) Show that L_{k} is x-slice $\forall K \geq 2$
(we did L_{2}, L_{3}, and L_{4} in class)
b) How many components does L_{k} have? Which x-slice surface does it bound?

Note: these are related to the lattice embeddings $\left(\mathbb{Z}^{m+1}, Q\right) \rightarrow\left(\mathbb{Z}^{m+1},-I\right)$ where $Q=\left[\begin{array}{ccc}-n & 1 & 0 \\ 1-2 & 1 \\ 0 & 1 & -2\end{array}\right]$ from last week
4.) For a knot K,
$g_{3}(k)=\min \left\{\right.$ genus of $\sum \mid \sum$ is an orientable surface embedded $m s^{3}$ with $\left.\partial z=k\right\}$
$g_{4}(k)=\min \left\{\right.$ genus of $\sum \mid \sum$ is an orientable surface embedded $m B^{4}$ with $\left.\partial \Sigma=k\right\}$
a) Show that $g_{4}(k) \leq g_{3}(k) \quad \forall k$
b) Give an example of a knot with $g_{3}(k)=g_{4}(k)$.
c) Give an example of a Knot with $g_{3}(k)=1$ and $g_{4}(k)=0$.
(Note: It is hard in general to determine g_{3}, g_{4}. This question is the basis of ongoing research in knot theory)

