Intersection Form

Intersection Number				
closed man: compact, $\partial X = \emptyset$				
	-man,	2-man,	3-man	4-man
closed	$igodot_{\delta'}$	5777 20	S ³	S4
not closed	R ⁽ [0,1] ← →	6 0 2	() 8 ³	B ⁴

Let X be a compact surface. Any two closed arrives on X can be wiggled so that they intersect in a finite set of pts

a surface (2-d/m-) $* S \subset \chi^3$ LCX I-dim.

⇒ S and L can be wiggled so they intersect in a set of discrete pts.

 $E x : \chi = S^3$

* More generally If A,B are closed subman of M and dim(A) + dim(B) = dim(M)=> A and B can be wiggled so that they intersect at pinily many pts. X is a 4-man. * In particular, if olosed surfaces, and $S_1, S_2 \subset X$ intersect at \implies S, and S₂ fin. ly many pts.

Algebraie Intersection Number: If S1, S2 CX oriented => each intersection pt. has a sign. alg. int. $# := # (S_1 \cap S_2)$ signed count of the intersection pts. +1: If orientation of S, followed by orientation of S2 agrees with the orientation on X

-1: Otherwise

Ex: 2-handles in 4-mans.

Attach the 2-handle h to B4 along K with framing n.

h: 2-handle with core D $K \subset S^3$: a knot (attaching circle of h) $Z \Rightarrow B^4$ embedded oriented surface $\partial Z = K$ $S = Z \cap D$ $\Rightarrow \#(S \cap S) = O$

h: : 2-handles $K_i \subset S^3$;) Knots (attaching circle of h_i) Z; CB4: surfaces with $\mathcal{F}_{i} = K_{i}$ D_i ; core of $h_{i,j}$ $S_i : \Sigma_i \cap D_i$ \Longrightarrow #(SINS2)=(k(KI,K2)

Intersection Form:
Let X be an oriented 4-man.

$$Q_X: H_2(X)/tor \times H_2(X)/tor \longrightarrow X$$

 $a = [\Sigma_1]$ $b = [\Sigma_2]$
 $\Sigma_{1, \Sigma_2} \subset X: closed, oriented surfaces$
 $Q_X(a_1b) = #(\Sigma_1 \cap \Sigma_2)$ counted with sign
 $Q_X(a_1a) = #(\Sigma_1 \cap \Sigma_1)$ counted with sign

Torsion subgroup: $T \leq G$ st. $T = \{ \} \}$ geG : g has finite order $\}$ Remarks :

(1) Any element in $H_2(X,Z)$ can be repr. by a smoothly embd., closed, oriented surface in X. 2 Qx is a symmetric, bilinear form. $(3) \ \mathbb{Q}_{X_1 \# X_2} = \mathbb{Q}_{X_1} \oplus \mathbb{Q}_{X_2}$ (4) Given a basis for H2 a can be repr. by a matrix. $b_2^+(X), b_2^-(X) := \# \pm eigenvalues of QX$

Invariants: (a) rank $(Q_M) =$ $\operatorname{rank}_{\mathbb{Z}}\left(H_{2}(M;\mathbb{Z})\right) = b_{2}(X) = b_{2}^{+}(X) + b_{2}^{-}(X)$ (b) signature $\infty(X) = \sigma(Q_X) = b_2^+(X) - \overline{b_2}(X)$ Oparity: (even or odd) $Q_X := \begin{cases} even & \text{if } Q_X(a,a) \equiv 0 \pmod{2} \\ odd & \text{otherwise} \end{cases}$ $\forall a \in H_2(x)$ Defin Qx is called positive definite: $Q_{\chi}(a,a) > 0$ $\forall 0 \neq \alpha \in H^2(X; \mathbb{Z})$ negative definite: $Q_X(a_ia) < 0$ $\forall 0 \neq \alpha \in H^2(X; \mathbb{Z})$ neg definite definite : pos. or indefinite : Otherwise.

If X⁴ is built from a O-handle and n 2-hondles
without L and 3-handles

$$\Rightarrow H_2(X) \cong \mathbb{Z}^n$$

$$h_i : \text{ core of the 2-handle}$$

$$with \text{ framing } n_i \cdot$$

$$\sum_i = \text{Seifert Surface of K};$$

$$S_i = \sum_i \bigcup h_i$$

$$\Rightarrow \#(S_i \cap S_i) = n_i$$

$$\#(S_i \cap S_i) = (k(K_i, K_j))$$
Moreover, if $B_{H_2(X)} = \{ [S_i], \dots, [S_n] \}$

$$\Rightarrow Q_X([S_i], [S_j]) = \begin{cases} (k(K_i, K_2) & i \neq j \\ n_i & j = j \end{cases}$$

 $V = \frac{|k(K_1, K_2) = \frac{\delta - 2}{2} = -1}{|k(K_2, K_1)|}$

 $|k(K_1, K_1) = -2$ $|k(K_2, K_2) = -2$

unimodular: Q_X is invertible over \mathbb{Z} . i.e. $det(Q_X) = \pm L$

Fact:

 X^4 : closed \implies det $(Q_X) = \pm \bot$

non-deg. := invertible i.e. $det(Q_X) \neq 0$ Thm: [Donaldson] X⁴ : closed, oriented, smooth Q_X : definite

 $\Rightarrow Q_X$ is diagonalizable. i.e. $\exists a \text{ basis for } H_2(X) \text{ s.t. } Q_X = \pm I$

Conclusion

 X^4 : closed, oriented, smooth Q_x : definite

=> 3 lattice isomorphism

 $\left(H_{2}(X)/_{\text{tor}}, Q_{X}\right) \longrightarrow \left(\mathbb{Z}^{n}, \pm \mathbb{I}\right)$

Thm: Qx: indepinite,

(a) If Qx is odd $Q_{X} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & -1 \end{bmatrix} = up \text{ to change of basis}$ $Q_{X} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & -1 \end{bmatrix} \xrightarrow{n} M(1) \oplus n(-1)$ $E_{X}: X = m ClP^2 \# n ClP^2 rank = b_2 = m + n$ œ = m−n b IP Q_x is even $Q_x = m E_g \oplus n H$ m ∈Z, n ∈ N- 203 $b_2 = 8 |m| + 2 |n|$ where $\omega = -8m$ unimodular $H = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ indef. even pos. definite $\operatorname{rank}(E_8) = 8 = \operatorname{cr}(E_8)$ $Q_{S^2 \times S^2} = H$ MER is NOT smooth

Take 8 basis rectors and put to the diagonal a - 2 . I if the carr. two vertices are connected · O if they are not connected

Thm: [Oonald son]

 $Q_{X} : even$ $b_{2}^{+}(X) \leq 2$ $\Rightarrow Q_{X} = H \text{ or } H \oplus H$

10/8 - Thm: [Furuta]

Note: $\frac{b_2 - 8 \operatorname{Im}}{2} \ge 2 \operatorname{Ir} + 1 \ge 2 \operatorname{Ir}$ $\Longrightarrow b_2 - 16 \operatorname{Ir} \ge 4 \operatorname{Ir} = b_2 \ge 20 \operatorname{Ir}$ $\Longrightarrow b_2 \ge 20 \operatorname{Ior} = \frac{10}{8} \operatorname{Ior}$

Thm: Freedman, Donaldson X1,X2: smooth, closed, simply - conn. $X_1 \simeq X_2 \iff (I) b_2(X_1) = b_2(X_2)$ $(2) G(X_1) = O(X_2)$ (3) X, and X2 have the same parity (i.e. both even or odd)

Conclusion: X4: cocs, simply-conn.

(a) Q_{X} : odd \Longrightarrow

 $X \simeq m \mathbb{C} | P^{2} \neq n \overline{\mathbb{C}} | P^{2} \quad m, n \ge 0 \quad \text{or}$ $(m = n = 0 \implies X \simeq 5^{4})$ $(m = n = 0 \implies X \simeq 5^{4})$ $X \simeq \ell \text{ K3} \neq (n - 3\ell)(5^{2}x 5^{2})$ $E(2) \qquad Q_{E(2)} = 2E_{8} \oplus 3H$