Intersection Form

Intersection Number closed man: compact, $\partial X=\varnothing$

Let X be a compact surface.
Any two closed carves on X can be wiggled so that they intersect in a finite set of pts

$$
\xrightarrow[\text { wiggle }]{ }
$$

* $S \subset X^{3}$ a surface (2-dim.) $L \subset X \quad$-dim.
$\Rightarrow S$ and L can be wiggled so they intersect in a set of discrete pts.
$E X: X=S^{3}$

* More generally

If A, B are closed subman of M and $\operatorname{dim}(A)+\operatorname{dim}(B)=\operatorname{dim}(M)$
$\Rightarrow A$ and B can be wiggled so that they intersect at finely many pts.

* In particular, if X is a 4-man. and $S_{1}, S_{2} \subset X$ closed surfaces,
$\Longrightarrow S_{1}$ and S_{2} intersect at fin. ly many pts.

Algebraic Intersection Number:
If $S_{1}, S_{2} \subset X$ oriented
\Rightarrow each intersection pt. has a sign .
alg. int. $\#:=\#\left(S_{1} \cap S_{2}\right)$
signed count of the intersection pts.
+1 : If orientation of S_{1} followed by orientation of S_{2} agrees with the orientation on X
-1: Otherwise

Example:
Orientation on T^{2}

$$
\nRightarrow\left(s_{1} \cap s_{2}\right)=-1 \quad \nexists\left(s_{1} \cap s_{2}\right)=-1+1-1=-1
$$

Self Intersection Number of a surface $S \subset X$

$$
\#(S, \tilde{S})
$$

$\widetilde{S}=$ oriented push off of S (parallel)

EX:

Sintersects \widetilde{S} at one pt.

Ex: 2-handles in 4-mans.:

h : 2-handle with care D $K \subset S^{3}$: a knot (attaching circle of h)
$\Sigma \leadsto B^{4}$ embedded oriented surface

$$
\begin{aligned}
& \partial \Sigma=K \\
& S=\Sigma \cap D \\
& \Rightarrow \nRightarrow(S \cap \tilde{S})=\cap
\end{aligned}
$$

$E X:$

$h_{i}: 2$-handles
$k_{i} \subset S^{3}: \mid$ nobs (attaching circle of h_{i})
$\Sigma_{i} \subset B^{4}$: surfaces with

$$
\partial \Sigma_{i}=K_{i}
$$

D_{i}; core of h_{1},
$S_{i}=\Sigma_{i} \cap D_{i}$

$$
\Rightarrow \nRightarrow\left(S_{1} \cap S_{2}\right)=1 k\left(k_{1}, K_{2}\right)
$$

Intersection Form:
Let X be an oriented 4 -man.

$$
\begin{aligned}
& Q_{X}: \underset{\sim}{H_{2}(X)} / \text { tor } \times \underset{2}{H_{2}(X) / \text { tor }} \longrightarrow X \\
& a=\left[\Sigma_{1}\right] \quad b=\left[\Sigma_{2}\right]
\end{aligned}
$$

$\Sigma_{1}, \Sigma_{2} \subset X=$ closed, oriented surfaces
$Q_{x}(a, b)=\#\left(\Sigma_{1} \cap \Sigma_{2}\right) \quad$ counted with sign $Q_{x}(a, a)=\#\left(\Sigma, \cap \tilde{\Sigma}_{1}\right) \quad$ counted with sign

Torsion subgroup: $T \leq G$ st. $T=\{g \in G=g$ has finite order $\}$

Remarks:
(1) Any element in $H_{2}(x, \mathbb{E})$ can be reps. by a smoothly embed., closed, oriented surface in X.
(2) Q_{x} is a symmetric, bilinear form.
(3) $Q_{x_{1} \neq x_{2}}=Q_{x_{1}} \oplus Q_{x_{2}}$
(4) Given a basis for H_{2} Q_{x} can be reps. by a matrix.

$$
b_{2}^{+}(x), b_{2}^{-}(x):=\# \pm \text { eigenvalues of } Q_{x}
$$

Invariants:
(a) $\operatorname{rank}\left(Q_{M}\right)=$

$$
\operatorname{rank}_{z}\left(H_{2}(M ; \mathbb{Z})\right)=b_{2}(X):=b_{2}^{+}(x)+b_{2}^{-}(x)
$$

(b) signature

$$
\sigma(X)=\sigma\left(Q_{x}\right)=b_{2}^{+}(X)-b_{2}^{-}(X)
$$

(C) parity: (even OR odd)
$Q_{x}:=\left\{\begin{array}{ll}\text { even } & \text { if } Q_{x}(a, a) \equiv O(\bmod 2) \\ \text { odd } & \text { otherwise }\end{array} \quad \forall a \in H_{2}(x)\right.$
Defn: Q_{x} is called
positive definite: $Q_{x}(a, a)>0 \quad \forall 0 \neq a \in H^{2}(x ; \mathbb{Z})$
negative definite: $Q_{X}(a, a)<0 \quad \forall 0 \neq a \in H^{2}(X ; \mathbb{Z})$ definite: pos. or neg. definite indefinite: Otherwise.

If x^{4} is built from a 0 -handle and $n 2$-handles without L and 3 -handles

$$
\Longrightarrow H_{2}(x) \cong \mathbb{Z}^{n}
$$

h_{i} : core of the 2 -handle with framing n_{i}.
$\Sigma_{i}=$ Seifert Surface of K_{i}

$$
\begin{aligned}
S_{i} & =\Sigma_{i} \cup h_{i} \\
\Rightarrow & \neq\left(S_{i} \cap \widetilde{S}_{i}\right)=n_{i} \\
& \#\left(S_{i} \cap S_{j}\right)=1 k\left(K_{i}, K_{j}\right)
\end{aligned}
$$

Moreover, if $B_{H_{2}(x)}=\left\{\left[s_{1}\right], \ldots,\left[s_{n}\right]\right\}$

$$
\Rightarrow Q_{x}\left(\left[s_{i}\right],\left[s_{j}\right]\right)=\left\{\begin{array}{cl}
1 k\left(k_{1}, k_{2}\right) & i \neq j \\
n_{i} & i=j
\end{array}\right.
$$

Ex: $\quad X=$

$$
\begin{aligned}
& \mathbb{K}\left(K_{1}, k_{2}\right)=\frac{0-2}{2}=-1 \\
& \mathbb{K}\left(k_{2}, k_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mid k\left(k_{1}, K_{1}\right)=-2 \\
& \mid k\left(K_{2}, K_{2}\right)=-2
\end{aligned}
$$

$$
Q_{x}=\left[\begin{array}{cc}
k_{1} & k_{2} \\
-2 & -1 \\
-1 & -2
\end{array}\right] \begin{aligned}
& k_{1} \\
& k_{2}
\end{aligned}
$$

unimodular: Q_{x} is invertible over \mathbb{E}.

$$
\text { ie. } \quad \operatorname{det}\left(Q_{x}\right)= \pm \alpha
$$

Fact:

$$
\begin{aligned}
X^{4}: \text { closed } & \Longrightarrow \operatorname{det}\left(Q_{x}\right)= \pm 1 \\
\text { non-deg: }: & \text { invertible } \\
& \text { ie. } \operatorname{det}\left(Q_{x}\right) \neq 0
\end{aligned}
$$

The: [Donaldson]
X^{4} : closed, oriented, smooth
Q_{x} : definite
$\Rightarrow Q_{x}$ is diagoralizable.
i.e. \exists a basis for $H_{2}(x)$ s.t. $Q_{x}= \pm I$

Conclusion:
X^{4} : closed, oriented, smooth
Q_{x} : definite
$\Rightarrow \exists$ lattice isomorphism

$$
\left(H_{2}(x) / \text { tor }, Q_{x}\right) \longrightarrow\left(\mathbb{Z}^{n} \pm I\right)
$$

Tho: Qu: indefinite,
(a) If Q_{x} is odd
$Q_{x}=\left[\begin{array}{cc}\cdots m & 0 \\ 0 & n\end{array}\right]=$ up to change of basis $\sim m\langle 1\rangle \oplus \cap\langle-1\rangle$

$$
m=b_{2}^{+} \quad n=b_{2}^{-}
$$

Ex: $\quad X=m \mathbb{C}^{2} \# n \overline{\mathbb{C}}^{2} \quad$ rank $=b_{2}=m+n$ $\sigma=m-n$
(b) If Q_{x} is even
$Q_{x}=m E_{8} \oplus n H \quad m \in \mathbb{Z}, n \in \mathbb{N}-\{0\}$
where $\quad \sigma=-8 m \quad b_{2}=8|m|+2|n|$

$$
Q_{S^{2} \times S^{2}}=H
$$

$M_{E_{8}}$ is NoT smooth

Take 8 basis vectors and put
an to the diagonal
α If the corr. two vertices are connected
if they are not connected

The: Q_{x} : definite
\Rightarrow for a fixed rank
\exists only finley many different Q 's.
(including $n\langle 1\rangle, m\langle-1\rangle$)

Thm: [Rokhlin]
$X^{4}: \operatorname{cose}$, simply-conn., Q_{x} even

$$
\begin{aligned}
& (\Rightarrow \text { spin }) \\
\Rightarrow & \sim(x) \equiv 0 \quad(\bmod 16) \\
(\Rightarrow & m=\text { even }=2 r)
\end{aligned}
$$

Thm: [Donaldson]
$x^{4}=\cos c$

$$
\begin{aligned}
Q_{x}+\operatorname{def} n & \Rightarrow Q_{x} \sim m\langle 1\rangle \\
-\operatorname{def} n & \Rightarrow Q_{x} \sim n\langle-1\rangle
\end{aligned}
$$

Thm: [Oonaldson]
$\left.\begin{array}{l}Q_{x}=\text { even } \\ +(x) \leq 2\end{array}\right\} \Rightarrow Q_{x}=H \quad O R \quad H \oplus H$
10/8-Thm: [Furuta]
$Q_{x}=$ even

$$
\left.\begin{array}{l}
Q_{x}=\text { even } \\
Q_{x}=2 r E_{8} \oplus \cap H
\end{array}\right\} \Rightarrow n \geqslant 2|r|+1
$$

Note: $\frac{b_{2}-8|m|}{2} \geqslant 2|r|+1 \geqslant 2|r|$

$$
\begin{aligned}
& \Longleftrightarrow b_{2}-|\sigma| r|\geqslant 4| r\left|\Longleftrightarrow b_{2} \geqslant 20\right| r \mid \\
& \Leftrightarrow b_{2} \geqslant 20 \frac{|\sigma|}{16}=\frac{10}{8}|\sigma|
\end{aligned}
$$

11/8 Conjecture
$Q_{x}=$ even

$$
\begin{aligned}
& Q_{x}=2 r E_{8} \oplus \cap H \\
& \Rightarrow n \geqslant 3|r|
\end{aligned}
$$

Note: $a=-8 m=-16 r \quad b_{2}=8|m|+2|n|$

$$
r=\frac{-\alpha}{16} \quad n=\frac{b_{2}-8(m)}{2}
$$

$$
\begin{aligned}
& n \geqslant 3|r| \Leftrightarrow \frac{b_{2}-8|m|}{2} \geqslant 3|r| \\
& \Leftrightarrow \frac{b_{2}-|\sigma|}{2} \geqslant \frac{3}{16}|\sigma| \\
& \Leftrightarrow b_{2}-|\sigma| \geqslant \frac{3}{8}|\sigma| \Leftrightarrow b_{2} \geqslant \frac{\mid 1}{8}|\sigma|
\end{aligned}
$$

The: Freedman, Donaldson X_{1}^{4}, X_{2}^{4} : smooth, closed, simply - conn.

$$
X_{1} \underset{\text { hames }}{\sim} x_{2} \Leftrightarrow(1) b_{2}\left(x_{1}\right)=b_{2}\left(x_{2}\right)
$$

(2) $\sigma\left(x_{1}\right)=\sigma\left(x_{2}\right)$
(3) x_{1} and x_{2} have the same parity
(ie. both even or odd)

Conclusion: X^{4} : cocs, simply-conn.
(a) Q_{x} : odd \Rightarrow

$$
\begin{gathered}
X \simeq m \mathbb{C} \mathbb{P}^{2} \not \# n{\overline{\mathbb{C}} \mathbb{P}^{2}} \quad m_{1} n \geqslant 0 \quad \theta R \\
\left(m=n=0 \Rightarrow X \simeq S^{4}\right)
\end{gathered}
$$

(b) $Q_{x}:$ even \Rightarrow

$$
\begin{aligned}
& x \simeq l K 3 \neq(n-3 l)\left(S^{2} x S^{2}\right) \\
& E(2) \quad Q_{E(2)}=2 E_{8} \oplus 3 H
\end{aligned}
$$

