- Knots
- Links
- Spanning Surfaces

Knot in M^{3}
$K^{+} \subset M^{3}$: connected 1 -dim.
submanifold

- embedded
- $\partial k=\varnothing$

A knot is an embedding

$$
S^{1} \longleftrightarrow M^{3}
$$

Remark:
Manifolds \longleftrightarrow homeomorphisms
Knots \longleftrightarrow isotopy
isotopy: = continuous
distortion/deformation
ambient isotopy of K_{1} to K_{2}

$$
F: M \times[0,1] \longrightarrow M \text { st. }
$$

(1) F is continuous
(2) $F_{0}\left(K_{1}\right)=K_{1} \quad$ (actually $\left.F_{0}=i d\right)$
(3) $F_{1}\left(K_{1}\right)=K_{2}$
(4) $F_{f}: M \rightarrow M$ homes $\forall t \in[0,1]$

Notation: $F_{+}: M \times\{+\} \rightarrow M$

Defn: Two knots K_{1} and K_{2} are isotopic if
$\exists \varphi=S^{3} \longrightarrow S^{3}$ homed
st. $\varphi\left(k_{1}\right)=k_{2}$

Diagrams:
Hew to express lanots in \mathbb{R}^{3} / S^{3} project K onto \mathbb{R}^{2} / S^{2} in \mathbb{R}^{3} / S^{3} "good projection"

\downarrow remember crossing info

Reidemeister Moves:
(1)

twist untwist
(2)

(3)

$$
\begin{aligned}
& \dot{C} \equiv(Q \\
& 8-(\oplus) \\
& -(D) \cdot G
\end{aligned}
$$

Remark:
unknot

Need Knot Invariants.
Why study Knots?
(1) Easy to state questions about knots that are really hard to answer.
(2) Use knots to construct 3 and 4 -mans.

Spanning Surfaces/Seifert Surfaces Spanning Surface of a Knot K : A surface whose boundary is K.
Seifert Algorithm
(1)Start with a projection of K.
(2) Give it an orientation
(3) Eliminate the crossings:

- At each crossing two strands come in and two come out
- Connect each of the strands coming into the crossing to the adjacent strand leaving the crossing

(4) Fill in the circles. Peach circle will bound a disk
(5) Color the disks
(6) Connect the disks to one another, at the crossings of the knots, by twisted bands.

EX:
(1)

(2)

(3)

(4) (t)

(6)

This is a compact orientable spanning surface for K.
\# bands $=3$
\# disks $=2$
\# boy components $=\mathcal{L}$

$$
\begin{aligned}
& \Rightarrow x(s)=2-3+1=0 \\
& \Rightarrow g=1
\end{aligned}
$$

may NOT be the genus of the link/lanot.

Dea:

$$
g(L)=\min \{\text { genus of } S \text { : }
$$

S is a Seifert Surface for L
Remarks:
(1) Seifert Algorithm may or may NOT produce minimal genus (max X) surface.

So, finding the minimal genus can be difficult.
(2) Minimal Seifert Surface is NOT unique.
ie. a given knot may have two different Seifert surfaces of least genus.
(3) $g\left(k_{1} \# k_{2}\right)=g\left(k_{1}\right)+g\left(k_{2}\right)$

Remarks
(1) These surfaces may θR may NOT be orientable.

Exercise:

(2) A surface S is non-orientable $\Leftrightarrow M B C S$

Example:

unknot bounds a disk, disk spanning surface for the unknot. (only lanot with this property up to isotopy)

Remarks:
 is also a spanning surface for trefoil knot but a wierd one.

Usefull to consider "minimal" spanning surfaces.
ie. $\max x$.

(2) We don't want to consider spanning surfaces with closed components
(3) Sometimes want to restrict to orientable surfaces.

Ex: Figure 8 knot 4_{1}

Q: Which of these oricntable?

NEITHER

Links:

$$
L \underset{\text { embedding }}{C} M^{3}
$$

Embeding of $\bigcup_{i=1}^{n} S^{\prime} \hookrightarrow M$ $O R$
1-dim. submanifold of $M M^{3}$ with NO boundary.

Examples:
(1) Hopf Link:
 2-components
(2)

2 -components
(3)

2-components
(4)

1-component (not a link)

Remark:

- Diagrams make sense.
- Seifert Algorithm

Q: What is different?
(1)Links can bound disconnected surfaces.

(2) even restrict to orientable surfaces "minimal genus"
$\max x$ (dent allow closed components.)

$$
L=K_{1} \cup K_{2} \cup K_{3}
$$

Q : What is the max X spanning surface this link could have?

Any 3-component link?

as oriented links

Remark:

not isotopic to the previous two.

Linking Number

$$
l k\left(K_{1}, K_{2}\right)=\underset{\substack{\text { oriented } \\ \text { count }}}{\nRightarrow} K_{1} \cap F_{2}
$$

Linking number between two components of an (oriented) link, say K_{1} and K_{2}, is an oriented count of intersections between K_{1} and F_{2}

$$
l k\left(k_{1}, k_{2}\right):=\frac{\nexists(+1)+\nRightarrow(-1)}{2}
$$

Remark-1k doesn't depend on the choice of the Seifert Surface.

$$
I K\left(K_{1}, K_{2}\right)=\underset{\substack{\text { oriented } \\ \text { count }}}{\not \approx} F_{1} \cap K_{2}
$$

Examples:
(1)

$$
\left(k\left(k_{1}, k_{2}\right)=\frac{-2}{2}=-1\right.
$$

(2)

$$
\left(k\left(k_{1}, k_{2}\right)=\frac{-2}{2}=-1\right.
$$

(3)

$$
\left(k\left(k_{1}, k_{2}\right)=\frac{2}{2}=1\right.
$$

$\Rightarrow(1)$ (2) $\neq 3$
(4)

$$
l k\left(K_{1}, K_{2}\right)= \pm 2
$$

$$
\Rightarrow\left(k\left(k_{1}, K_{2}\right)=\frac{-4}{2}=-2\right.
$$

Facts about linking number
(1) Invariant of oriented links
(2) Symmetric:

$$
l k\left(K_{1}, K_{2}\right)=l k\left(K_{2}, K_{1}\right)
$$

Alternating α mots
A knot with a projection that has crossing that alternates between over and under. Example

alternating
 not alternating

Q: How can I describe an infinite family of knots?

RO RH (Right-Handed)

LH (Left Handed)

Examples:
(1) $T(2,2 n+1)$ Torus knots

(2) $T(2,2 n)$ 2-component link

$$
\text { Ex: } T(2,3)=\text { ? }
$$

trefoil knot
(3) Pretzel Links

3-strand Pretzel Link $P(p, q, r)$

\angle-strand Pretzel Links $P(p, q, r, s)$

