Knots
Links
Spanning Surfaces

Knot in M^3 : $K \subset M^3$: connected 1-dim. Submanifold • embedded • $\partial K = \emptyset$

A knot is an embedding $5' \longrightarrow M^3$

Remark: Manifolds <-> homeomorphisms Knots <-> isotopy

isotopy := continuous
distortion/deformation
amblent isotopy of K1 to K2

$$F: M \times [0,1] \rightarrow M$$
 st.
() F is continuous
(2) $F_0(K_1) = K_1$ (actually $F_0 = id$)
(3) $F_1(K_1) = K_2$
(4) $F_1: M \rightarrow M$ homeo. $\forall t \in [0, 1]$
Notation: $F_1: M \times St_3 \rightarrow M$
(2) $M \times St_3$
 $M \times St_3$

Diagrams: How to express knots in IR³/S³ project K onto IR²/S² in IR³/S³

"good projection"

trefoil

Reidemeister Moves:

Remark:

unknnt

Need Knot Invariants. Why study Knots? DEasy to state questions about knots that are really hard to answer.

2) Use knots to construct 3 and 4-mans.

Spanning Surfaces / Seifert Surfaces Spanning Surface of a Knot K: A surface whose boundary is K. Seifert Algorithm () Start with a projection of K. 2 Give it an orientation (3) Eliminate the crossings: At each crossing two strands come in and two come out · Connect each of the strands coming into the crossing to the adjacent strand leaving the crossing.

(4) Fill in the circles. (each circle will bound a disk
(5) Color the disks
(6) Connect the disks to one another, at the crossings of the knots, by twisted bands.

≻

This is a compact orientable spanning surface for K.

bonds = 3 # disks = 2 \neq boly components = L

 $\Rightarrow \chi(s) = 2 - 3 + 1 = 0$ $\Rightarrow g = 1$

may NOT be the genus of the link/knot. Defn:

g(L)=min Egenus of S: Surface for L S is a Seifert Remarks: () Seifert Algorithim may or may NDT produce minimal genus (max X) surface. So, finding the minimal genus can be difficult.

(2) Minimal Seifert Surface is NOT unique. i.e. a given knot may have two different Seifert surfaces of least genus. $(3) g(K_1 \# K_2) = g(K_1) + g(K_2)$

Remarks

() These surfaces may OR may NOT be orientable.

Exercise

2) A surface S is

non-orientable MBCS

unknot bounds a disk, disk spanning surface for the unknot. (Only knot with this properly up to isotopy)

Remarks:

is also a spanning surface for trefoil knot but a wierd one Usefull to consider "minimal spanning surfaces. ie- max X.

2 We don't want to consider spanning surfaces with closed components

(3) Sometimes want to restrict to orientable surfaces.

Links:

Remark:

- Diagnams make sense. Seifert Algorithm Q: What is different? () Links can bound disconnected surfaces. 2) even restrict to orientable surfaces

"minimal genus" max χ (den't allow closed components.)

 $L = K_1 U K_2 U K_3$

Q: What is the max X spanning surface this link could have?

not isotopic to the previous two.

$$\frac{1}{1}$$
Thumb of
my right hand
$$(-1)$$

$$lk(H_1, H_2) := \frac{\#(+1) + \#(-1)}{2}$$

Remark: 1k doesn't depend on
the choice of the Seifert Surface.
$$lk(K_1, K_2) = # F_1 M K_2$$

oriented
count

 $(k(K_1,K_2) = \frac{-2}{2} = -1)$

 $(k(K_1, K_2) = \frac{2}{2} = 1$

 ± 2 $\ell k(K_1, K_2) =$

 \Rightarrow $(k(K_1,K_2) = -\frac{4}{2})$

Alternating Knots A knot with a projection " that has crossing that alternates between over and under.

Example

alternating

not alternating

Rtt (Right-Handed)

LH (Leff Handed)

Examples:

 $(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{2}, \mathbf{1}, \mathbf{1})$ Torus knots

T(2,2n) 2-component link 2

 $E_{X}: T(2,3) = ?$

trefoll

3-strand Pretzel Link P(P,9,r)

4-strand Pretzel Links P(p,g,r,s)

