Lattices

Def: Let Q be a nondegenerate symmetric bilinear form on 2ⁿ. Then (2ⁿ, Q) is called a lattice (of rank n)

Note: If a matrix is given for Q, it is understood that the standard basis has been chosen.

$$E_{X}$$
 (Z¹, I) is the standard positive definite lattice
 $(Z^{1}, -I)$ is the standard negative definite lattice

Def: Let $[v_{1,-}, v_k] \subset \mathbb{Z}^n$ be a linearly independent Set of vectors. Let $L = \operatorname{Span}_{\mathbb{Z}}[v_{1,-}, v_k]$ then (L, Q) is called a sublattice of (\mathbb{Z}, Q) of rank k(f k = n, (L, Q) is called a full rank sublattice

Def: let
$$(2^n, Q_1)$$
 and $(2^n, Q_2)$ be lattices
A lattice embedding $(2^n, Q_1) \rightarrow (2^n, Q_2)$ is a map
 $\varphi: Z^n \rightarrow Z^n$ satisfying:
(i) $\varphi(v+w) = \varphi(v) + \varphi(w)$ $\forall v_1 w \in Z^n$ (φ is agroup homomorphism)
(ii) $Q_1(v_1w) = Q_2(\varphi(v), \varphi(w))$ $\forall v_1 w \in Z^n$
We usually write $\varphi: (Z^n, Q_1) \rightarrow (Z^n, Q_2)$

Ex: let
$$Q_1 = \begin{bmatrix} -5 & i \\ i & -2 \end{bmatrix}$$
 and $Q_2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I$
Find a lattice embedding $Q: (Z^2, Q_1) \longrightarrow (Z^2_1 Q_2)$
let $\{f_{1i}, f_{2i}\}$ denote the Standard basis for the domain
let $\{e_{1i}, e_{2i}\}$ denote the standard basis for the domain
hen $Q(f_1) = \chi_1 e_1 + \chi_2 e_2 = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$
 $Q(f_2) = Y_1 e_1 + y_2 e_2 = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$

•
$$-5 = Q_1(f_{1,1}f_1) = Q_2(\varphi(f_1), \varphi(f_1)) = -\chi_1^2 - \chi_2^2 \implies (\chi_1, \chi_2) \in \overline{I}(\pm 2, \pm 1), (\pm 1, \pm 2)\overline{J}$$

Choose $\chi_1 = -2, \chi_2 = 1$. Note: Choosing another possibility
corresponds to charge of basis.

•
$$-2 = Q_1(f_2, f_2) = Q_2(\varphi(f_1), \varphi(f_2)) = -y_1^2 - y_2^2 \implies (y_1, y_2) = (\pm 1, \pm 1)$$

• $1 = Q_1(f_1, f_2) = Q_2(\varphi(f_1), \varphi(f_2)) = -\chi_1 y_1 - \chi_2 y_2 = 2y_1 - y_2$

•
$$I = Q_1(f_1, f_2) = Q_2(\varphi(f_1), \varphi(f_2)) = -\chi_1 y_1 - \chi_2 y_2 = 2y_1 - y_2$$

 $\Rightarrow y_1 = y_2 = 1.$

$$\Im \qquad \varphi(f_1) = -2e_1 + e_2$$
$$\varphi(f_2) = e_1 + e_2$$

Since
$$q: \mathbb{Z}^n \to \mathbb{Z}^n$$
, we can express it as
the matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$
since $q(f_1) = A[0] = [1] = e_1 + e_2$
 $q(f_2) = A[0] = [-7] = -2e_1 + e_2$

In general, given bases for (Z,Q_1) and (Z,Q_2) , a lattice embedding $\Psi: (Z,Q_1) \rightarrow (\mathcal{D},Q_2)$ can be expressed as multiplication by a metrix P i.e. $\Psi(v) = Pv$ $\forall v \in Z^{\uparrow}$

Moreover, since
$$Q_1(v,\omega) = Q_2(\varphi(v),\varphi(\omega))$$

we have that $Q_1(v,\omega) = Q_2(Pv,P\omega)$.

If Q_1 and Q_2 are also matrix representations for Q_1 and Q_2 , we have $v^T Q_1 w = v^T (P^T Q_2 P) w$ $\Rightarrow Q_1 = P^T Q_2 P$

Hence $\det Q_1 = \det P^T \det Q_2 \det P = (\det P)^2 \cdot \det Q_2$.

Upshot: If
$$\mathcal{J}$$
 lattice embedding $\psi:(\tilde{z}, Q_1) \rightarrow (\tilde{z}, Q_2)$,
then $\frac{\det Q_1}{\det Q_2}$ is a perfect square.

 $E_{X}: Let Q_{I} = \begin{bmatrix} -2 \\ 1 - 2 \end{bmatrix}, \quad Q_{2} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ Show & lattice embedding $\varphi:(2^2,Q_1) \longrightarrow (2^2,Q_2)$ Method 1: det Q1 = 3 = 3 is not a perfect square This does not always work, so we'll also prove this using a method that always works) Method 2: Assume I an embedding y. then $\varphi(f_1) = \chi_1 e_1 + \chi_2 e_2$ $\varphi(f_2) = y_1 e_1 + y_2 e_2$ • $-2 = Q_1(e_1, e_1) = Q_2(\varphi(f_1), \varphi(f_1)) = -\chi_1^2 - \chi_2^2$ $\implies \chi_{1,1} \times_2 \in [\pm 1]$ • $-2 = Q_1(e_{2},e_{2}) = Q_2(\varphi(f_2), \varphi(f_2)) = -y_1^2 - y_2^2$ ⇒ チュ,ケェ ∈ を±1] But then $Q_2(\varphi(f_1), \varphi(f_2)) = -\chi_1 y_1 - \chi_2 y_2 \in [0, \pm 2]$ while $Q_1(f_1,f_2) = 1$ Thus we have reached a contradiction => If a lattice embedding