Donaldson's Obstruction Def: A varional homology 3-sphere (DS) is a closel 3-manifold Y Such that $H_1(Y)$ and $H_2(Y)$ are finite groups $(H_0(Y) = H_3(Y) \cong Z$ by default) Equivalently, $H_1(Y; \mathbb{R}) = H_2(Y; \mathbb{R}) = O$ (i.e. the vational homology of Y = vational homology of S³)A variand handony 4-ball (\mathcal{QB}^{i}) is a 4-manifold X with boundary such that $H_1(X)$, $H_2(X)$, $H_3(X)$ are finite groups $(H_0(X) \cong \mathbb{Z}, H_4(X) = 0$ by default) Fact If X is a QB', then DX is a QS3 But : Not all (RS35 bound a CRB4. EX: Poincaré Homology Sphere Let $X = OOOOOO , Y = \partial X$ The boundary of X is called the Poincaré homology sphere

Assume Y bonds a OB⁴, B. Then Z = X U(B) is a closed positive definite 4-mfld By Donaldson's theorem, Qz is diagonalizable and so I basis s.t. Qz = I Te.] lattice isomorphism $(Z^8, Q_2) \cong (Z^8, T)$ Since $\chi \in \mathbb{Z}$, $(\mathbb{Z}^8, \mathbb{Q}_{\chi})$ can be viewed as a sublettice of $(\mathbb{Z}^8, \mathbb{Q}_{\chi}) \cong (\mathbb{Z}^8, \mathbb{I})$ i.e. \exists lattice embedding $(Z^{2}, Q_{x}) \longrightarrow (Z^{8}, I)$ Sine det Qx = 1 = det Qz, this is an isomorphism \Rightarrow \exists lattice isomorphism $(2^8, E_8) \rightarrow (2^8, I)$ But by precious homework, no such embedding exists. Thus Y does not bound a QB4.

More generally: Suppose Y is a 3-mfld that bounds a pos/neg-definite 4-mfld X and a vational homology 4-ball B. Then Z=XUx(-B) is a closed pos/neg-definite 4-manifold with vank Hz(x) = rank Hz(Z).=n By Donaldson, we I lattice isom. $(Z^n, Q_z) \cong (Z^n, \pm I)$ Choose a basis for H2(X) and let Qx be its intersection metrix. Then I a lattice embedding (H2(P), Qx) (H2(X), ±In) (If |det Qx|=1, then this is an isom # equivalent to Saijing Qx is diagonalizable, as in Eg example) Denaldson's Obstruction If Y bounds a QIB⁴ & X is a pos/neg-def 4-mfl w/ $\partial X=Y$, then \exists lattice embedding $\varphi:(Z^n,Q_X) \longrightarrow (Z^n,\pm I)$

Ex: Lens Spaces Let $X = O = O = a_n$ $a_1 = a_2 = a_n$ Let $X = O = O = a_1 = 2$ $\forall i (neg-def)$ Set $f = [a_{1,-}, a_{n}] = a_{1} - \frac{1}{a_{2} - \frac{1}{2}}$ Then DK is called a lens space and it is denoted by L(P12) lens Spaces are QS3's. Q: Which lens space bound QB's? This was answered by Lisca in '07. (paper on site) He gave a list of 7 infinitely families of lens spaces that bound QB's To show all others do not bound QB's, he showed $\overline{F} (attrie embedding (Z', Q_x) \longrightarrow (Z', -T)$ (a lot of work) Read "leas spaces, vational balls, and the vildoon conjecture" by Lisca starting up Section 2.

Pouble Branched Covers Given a link $L \subset S^3$, we can form what is called the double cover of S^3 branched over L, which we denote by $\Sigma_2(L)$ this is a 3-menifold and often, it is a QS3. Griven a spanning surface $F \subset B^{\prime\prime}$ for L, we can also form the double cover of $B^{\prime\prime}$ branched over F, which we denote by $\Sigma_2(F)$ this is a 4-menifold. will define later then (Donald - Owers): If L is X-slice and det L = O, then Z₂(L) bounds a QB⁴, normely Z₂(F), where F CB⁴'s a surface w/ X(F)=1. Obstruction to X-sliceness If L is X-slive w/ detL=0 and Z_(L) bounds a definite 4-mfld X, then 3 lettice embedding $(H_2(X), Q_X) \rightarrow (Z^{rank(H_2,UX)} \pm I)$

Ex: 3-stranded pretzel Knots

let L= APJ.

If p.g>0, g<0, then

let Qx be the intersection form. Then if L 15 A-slice,

F lattice combedling (Z^{p+r}, Qx) → (Z^{p+r}, -I)

(when $\frac{1}{p} + \frac{1}{2} + \frac{1}{2} > 0$)