X-sliceness and lattice embeddings

Let Y be a \mathbb{QS}^3 that bounds a \mathbb{QB}^4 , B. (e.g. Y=Z_2(S,L), where L is a X-slice (ink)

Also assume Y bounds a positive/negative definite 4-mfld X. Then $Z = X \cup (-B)$ is a closed and positive/negative definite

By Donaldson's Diagonalization theorem
$$Q_Z$$
 is
diagonalizable. That is, \exists a basis under which
the matrix representation for Q_Z is $\pm I$.

Equivalently,
$$\exists a$$
 lattice isomorphism
 $(H_z(z), Q_z) \cong (\mathbb{Z}^n, \pm I)$, where $n = \operatorname{ran} K(H_z(z)) = \operatorname{ran} K(H_z(x))$

Since $X \subset Z$, there is a homomorphism $H_2(X) \rightarrow H_2(Z)$ induced by inclusion. It follows that $\exists a$ lattice embedding $\varphi: (H_2(X), Q_X) \longrightarrow (Z^n, \pm I)$ Donaldson's Obstruction:

If Y is a QS that bounds a positive/negative definite 4-manifold X and $\not\equiv (attice embedding (H_2(X),Q_X) \rightarrow (Z^n,\pm I))$, where n=rank(H_2(X)), then Y does not bound a QBY. Moreover, if $Y = Z_2(S^3, L)$ for some link $L \subset S^3$, then L is not X-slice.

Determinant Obstruction (weaker but easier than Donald son's)
Recall that if I lattice embedding

$$(H_2(X),Q_X) \rightarrow (Z_1^n \pm I)$$
, then $|\det Q_X|$ is a Square.
So, if $|\det Q_X|$ is not a square, then Y does
not bound a QB⁴.
Moreover, if $Y = \Sigma_2(S_1^3L)$, then L is not X-slice.
Recall: If $|\det L|$ is not a square, then L is not X-slice.
A connection: If $L \subset S^3$ with $\det L \neq O$ and X is
a 4-manifold with $\partial X = \Sigma_2(S_1^3L)$, then

$$|detL| = |H_1(\Sigma_2(S^3, L))| = |detQ_X|$$

 $(H_2(\Sigma_2(\mathcal{B}^{4}, F)), \mathcal{Q}_{\Sigma_2(\mathcal{B}^{4}, F)}) \longrightarrow (\mathbb{Z}^{n+1}), n=\operatorname{rank}(H_2(\Sigma_2(\mathcal{B}^{4}, F)))$ then $\Sigma_2(S^{3}, L)$ does not bound a QB⁴ (and L is not X-slive)

Conjecture (Greene-Owers). The converse is true.
If
$$\exists a \text{ cubiquitous (attice embedding}(H_2(\Sigma_2(B'_1F)), O_{\Sigma_2(B'_1F)}) \rightarrow (Z'_1 \pm T), n = \operatorname{rank}(H_2(\Sigma_2(B'_1F))))$$

then $\Sigma_2(S^3, L)$ bounds a QB'.

Lens Spaces and 2-bridge links.

where Ci=2 Vi.

Let
$$\frac{P}{2} = [c_{1}, ..., c_{k}]^{+} = C_{1} + \frac{1}{C_{2} + \frac{1}{C_{3} + ... + \frac{1}{C_{k}}}}$$

Fact:
$$Z_2(S^3, L(c_1, -, c_n)) = L(p_1 q)$$
 (lens space)

Let
$$\frac{P}{2} = [a_{1,-2}, a_{n}] = a_{1} - \frac{1}{a_{2} - \frac{1}{a_{3} - \frac{1}{a_{n}}}}$$

and
$$\frac{p}{p-q} = [b_1, \dots, b_m]^-$$
.

Let B and W be the checkerboard surfaces for
$$L(G_{1,-1},G_{n})$$

then $O_{Z_{2}(6^{n},W)}$ is represented by G_{W} (given by $\overset{a_{1}}{\bullet} \overset{-a_{2}}{\bullet} \overset{-a_{n}}{\bullet}$)
and $O_{Z_{2}(6^{n},B)}$ is represented by G_{B} (given by $\overset{b_{1}}{\bullet} \overset{-b_{2}}{\bullet} \overset{-b_{m}}{\bullet}$)
Moreover, $O_{Z_{2}(B^{n},W)}$ is negative definite and $O_{Z_{2}(B^{n},B)}$ is
positive definite.

Lisca classified which lens spaces bound QB's
prof: Obstruct all but 8 infinite families of lens spaces from
bounding QB's by showing A both
lattice embeddings

$$(H_2(\Sigma_2(B^{+},W)), G_W) \longrightarrow (Z^{ruk}(H_*(\Sigma_*(B^{+},W))), -I))$$

 $(H_2(\Sigma_2(B^{+},B), G_B) \longrightarrow (Z^{ruk}(H_2(\Sigma_*(B^{+},B))), I))$
 $(H_2(\Sigma_2(B^{+},B), G_B) \longrightarrow (Z^{ruk}(H_2(\Sigma_*(B^{+},B))), I))$
 $(He embeddings that do exist give visc
to standard Subsets)$
• Show that the remaining 8 infinite families bound
QB's by showing that the associated 2-bridge
Links are X-slice.

As a consequence,

$$L(p_1q)$$
 bounds a QB⁴ $\iff L(c_{1,-},c_n)$ is x-slice

It is known to be true when $\Sigma(a;-3) < O$. What about when $\Sigma(a;-3) \ge O$? Phrased differently: which standard subsets with $\Gamma(s) \ge O$ generate cubiquitous lattice embeddings?

Alternating braid closures

The closure of a braid is a link;

Recall, a wheel link In is the closure of the 3-braid

If n is even, Ln is not x-slice. One can check that detLn is not a square or that \mathcal{J} an associated lattice embedding, In particular $Z_2(S^3, Ln)$ doesn't bound a QB! On HW you showed that L_3 and L_5 are x-slice and so $\Sigma_2(S^3,L_i)$ bounds QB^4 for i=3,5. It turns out that $\Sigma(S^3,L_n)$ bounds QB^4 H oddn, but not all L_n are x-slice (for nodd) Moreover, the Greene-Owens conjecture is true for odd wheel links

Notation: Let $\sigma_i = \sum_{i=1}^{i} i for l \le i \le n-1$

Project: Let K be odd. Let LKM be the closure of the alternating K-braid given by $(\sigma_1 \sigma_2^{-1} \cdots \sigma_{k-2} \sigma_{k-1}^{-1})^n$ Explore the X-sliceness of Lxn and the Greene-Owens conjecture.