Def: A manifold X is called a rational homology Y
if
$$rank(H_i(X)) = rank(H_i(Y))$$
 V i.
that is, $H_i(X; Q) \cong H_i(Y; Q)$ V i.

$$E_X$$
: Let $X = R$, $n \neq D$. Then ∂X is a RS^3

Ex: Let
$$X = (f_1 - a_2)^{-a_1}$$
, $a_1 \ge 2 \forall i$.
Then ∂X is a lens space $L(p_1q)$, where
 $\frac{P}{q} = [a_{11} - a_n]^- = a_1 - \frac{1}{a_2 - \frac{1}{a_3 - \frac{1}{a_n}}}$

The simplest 4-manifold (as measured by rational homology) that a QS³ could bound is a rational homology 4-ball (QB⁴). Fact: If X is a QB⁴, then JX is a QS³.

The converse is not true in general. The following question is an active area of research Question: Which QSs bound QB's? this is solved for certain families of QS3s (e.g. lens spaces), but not in general. E_X : • B^4 is a QB^4 · Disa QBY whose boundary is the lens space L(4,1)

Fact: Let $L \subset S^3$ be a link. $\Sigma_2(S^3, L)$ is a $CRS^3 \iff det L \neq 0$

<u>theorem</u>: If L is x-slice and det $L \neq 0$, then $\Sigma_2(S^3, L)$ bounds a QB⁴, namely $\Sigma_2(B^4, F)$, where F is a X-slice surface for L.

 E_{X} : $Z_2(S_1^3, 6_1)$ bounds a QBY since 6_1 is slice.