Solutions
1.) $Q_{\varepsilon}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $Q_{B}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
3.) Suppox $Q(v, \omega)=0 \quad \forall \quad \omega \neq 0$.
then $Q(v, v)=0$. Since Q is definite, we have $v=0$.
2.) Let $B=\left\{b_{1} \ldots, b_{n}\right\}$ be a basis for \mathbb{Z}^{n}. Suppose Q is positive definite.
The (i, i)-th entry of Q_{B} is $Q\left(b_{i} b_{i}\right)>0$
4.) Suppose O is positive definite. Let B be a basis for e^{n}. Let λ be an eigenvalue of Q_{B}.
Let $v \neq O$ be a corresponding eigenvector.
Then $O<Q(v, v)=v^{\top} Q_{B} v=v^{\top}(\lambda v)=\lambda(v \cdot v)$
Since $v \cdot v>0$, we have $\lambda>0$.

