HW Solutions
Intersection Form
problems
(1) Find the intersection form of
(a) S^{4}
(b) $C I P^{2}$
(C) $S^{2} \times S^{2}$
(d) $k \mathbb{C} \mathbb{P}^{2} \nRightarrow m \overline{\mathbb{C}}^{2}$
solutions

$$
\begin{aligned}
& \text { (a) } S^{4} \\
& H_{2}\left(S^{4}\right)=0 \\
& Q_{s^{4}}=0
\end{aligned}
$$

(b) ΦI^{2}

$$
H_{2}\left(\mathbb{C} \mathbb{P}^{2} ; \mathbb{Z}\right)=\langle[L]\rangle \cong \mathbb{Z}
$$

$L \subseteq \mathbb{C} \mathbb{P}^{2}$: proof. line reps. a generator
Any two complex line intersects exactly at one point.

$$
\begin{aligned}
& \text { ie. } \quad[L][L]=1 \\
& \Rightarrow Q_{\mathbb{C} \mathbb{P}^{2}}=\langle 1\rangle
\end{aligned}
$$

Remark: Similarly $H_{2}\left(\overline{\mathbb{C}} \bar{T}^{2} ; \mathbb{Z}\right)=\langle[\llbracket]\rangle$

$$
\begin{gathered}
{[I][C]=-1} \\
Q_{\overline{C_{1 p^{2}}}}=\langle-1\rangle
\end{gathered}
$$

(C) $S^{2} \times S^{2}$

$$
H_{2}\left(s^{2} \times s^{2} ; \mathbb{Z}\right)=\langle[\alpha],[\beta]\rangle=\mathbb{E} \oplus \mathbb{Z}
$$

where $[\alpha]=\left[S^{2} \times\{p+\}\right] \quad[\beta]=\left[\{p+\} \times S^{2}\right]$

$$
\begin{aligned}
& {[\alpha]^{2}=0 \quad Q_{S^{2} \times S^{2}}([\alpha],[\alpha])=0} \\
& {[\beta]^{2}=0 \quad Q_{S^{2} \times s^{2}}([\beta],[\beta])=0} \\
& {[\alpha][\beta]=1=[\beta][\alpha]} \\
& \Rightarrow Q_{S^{2} \times S^{2}}([\alpha],[\beta])=1=Q_{S^{2} \times S^{2}}([\beta],[\alpha]) \\
& Q_{S^{2} \times S^{2}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } k \mathbb{P ^ { 2 } \neq m \overline { \mathbb { P } } ^ { 2 }} \\
& Q_{Q_{1 P^{2}}}=\langle 1\rangle \quad Q_{Q_{1 P^{2}}}=\langle-1\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =k Q_{\mathbb{Q} \mid P^{2}} \oplus m Q_{\overline{\mathbb{T}}^{2}} \\
& =k\langle 1\rangle \oplus m\langle-1\rangle
\end{aligned}
$$

(2) Show that there is NOT a closed, smooth, orientable $\operatorname{man} X$ with $Q_{x}=E_{8}$.

Solution:
Suppose X is a closed, smooth, orientable man. with $Q_{x}=E_{8}$ Assuming $\Pi_{1}(X)=1$

$$
\Longrightarrow \sim(X) \equiv O(\bmod 16)
$$

Rochlin
The

$$
\begin{aligned}
& \sigma(X)=8 \\
& E_{8}=\left[\begin{array}{ccccc}
2 & 1 & 1 & & \\
1 & 2 & 1 & 0 \\
1 & 2 & 1 & 0 \\
1 & 2 & 1 & \\
0 & 1 & 2 & 1 & 1 \\
0 & 1 & 1 & 1 \\
& 1 & 1 & 2
\end{array}\right] \begin{array}{l}
\text { unimodular } \\
\text { even } \\
\text { epos. definite } \\
\text { rank }\left(E_{8}\right)=8=\sigma\left(E_{8}\right)
\end{array}
\end{aligned}
$$

Rochlin's The has been extended to arbitrary fundamental groups by Ozsrath-Szabo.
(3) Find the intersection form of the following diagram.

$$
\begin{aligned}
& Q_{x}\left(\left[k_{1}\right],\left[K_{1}\right]\right)=\neq\left(S_{1}, \tilde{S}_{1}\right)=2 \\
& Q_{x}\left(\left[k_{2}\right],\left[k_{2}\right]\right)=\#\left(S_{2}, \tilde{S}_{2}\right)=-2 \\
& Q_{x}\left(\left[K_{3}\right],\left[K_{3}\right]\right)=\#\left(S_{3}, \widetilde{S}_{3}\right)=3
\end{aligned}
$$

$$
\begin{aligned}
& 1 k\left(K_{1}, K_{3}\right)=\frac{4-0}{2}=2 \\
& 1 k\left(K_{2}, K_{3}\right)=0
\end{aligned}
$$

-5 (180

$$
\begin{aligned}
& \nRightarrow\left(K_{1}, K_{2}\right)=\frac{0-20}{2}=-10 \\
& 1 K\left(K_{1}, K_{2}\right)=-10
\end{aligned}
$$

$$
\Rightarrow Q_{x}=\left[\begin{array}{ccc}
\alpha_{1} & \alpha_{2} & K_{3} \\
{\left[\begin{array}{ccc}
2 & -10 & 2 \\
-10 & -2 & 0 \\
2 & 0 & 3
\end{array}\right] \begin{array}{l}
\alpha_{1} \\
K_{2} \\
K_{3}
\end{array}}
\end{array}\right.
$$

