Solutions
1.) Yes! $\varphi\left(f_{1}\right)=e_{1}-e_{2}, \varphi\left(f_{2}\right)=e_{2}-e_{3}$

2\&3.) Answer: J lattice embedding $\Longleftrightarrow n=-m a^{2}+(a+1)^{2}$ for some $a \neq 0$
proof:
Let $\varphi:\left(Z^{m+1}, Q\right) \longrightarrow\left(Z^{m+1},-\Sigma\right)$ be a lattice embedding.
Set $V_{i}=\varphi\left(f_{i}\right) \quad \forall 1 \leqslant i \leqslant m+1$
and $v_{i} \cdot v_{j}=-I\left(v_{i}, v_{j}\right)$ (negative dot product)
Then, by definition,

$$
\begin{aligned}
& v_{1} \cdot v_{1}=-n \\
& v_{i} \cdot v_{i}=-2 \quad \forall 2 \leq i \leq m+1 \\
& v_{i} \cdot v_{j}=\left\{\begin{array}{lll}
1 & \text { if } & |i-j|=1 \\
0 & \text { if } & |i-j| \neq 1
\end{array}\right.
\end{aligned}
$$

Case I: $m=1, \quad Q=\left[\begin{array}{cc}-n & 1 \\ 1 & -2\end{array}\right]$
Let $v_{2}=x_{1} e_{1}+x_{2} e_{2}$. Then $-2=v_{1} \cdot v_{1}=-x_{1}^{2}-x_{2}^{2} \Rightarrow x_{1}= \pm 1, x_{2}= \pm 1$ Up to changing the basis, we may assume $x_{1}=1, x_{2}=-1$ So $v_{2}=e_{1}-e_{2}$.

Next let $v_{1}=y_{1} e_{1}+y_{2} e_{2}$
Then $v_{1} \cdot v_{2}=1 \Rightarrow-x_{1} y_{1}-x_{2} y_{2}=1 \Rightarrow y_{1}-y_{2}=1 \Rightarrow y_{1}=y_{2}+1$
Thus $-n=v_{1} \cdot v_{1}=-y_{1}^{2}-y_{2}^{2}=-\left(y_{2}+1\right)^{2}-y_{2}^{2}$
Hence $\exists$ lattice embedding $\Longleftrightarrow n=a^{2}+(a+1)^{2}$ for some $a \geq 1$.

Case 2: $m=2, \quad Q=\left[\begin{array}{ccc}-n & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2\end{array}\right]$
Let $v_{3}=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}$. Then $v_{3}-v_{3}=-2 \Rightarrow-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}=-2$

$$
\Rightarrow\left(x_{1}, x_{2}, x_{3}\right) \in\{( \pm 1, \pm 1,0),(0, \pm 1, \pm 1),( \pm 1,0, \pm 1)
$$

Up to charging basis, we may assurne $V_{3}=e_{1}-e_{2}$
Similarly, $v_{2}= \pm e_{i} \pm e_{j}$ for some $i \neq j \in\{1,2,3\}$
If $i=1$ and $j=2$ (or $i=2$ and $j=1$ ), then $v_{2} \cdot v_{3} \in\{0, \pm 2\}$, which contradicts the fact that $v_{2} \cdot v_{3}=1$.
Hence we may assume $i=2$ and $j=3$ Up to a charge of basis, we have $v_{2}=e_{2}-e_{3}$

Let $v_{1}=y_{1} e_{1}+y_{2} e_{2}+y_{3} e_{3}$.
Since $v_{1}-v_{3}=0$, we have $y_{2}-y_{1}=0 \Rightarrow y_{1}=y_{2}$
Since $v_{1} \cdot v_{2}=1$, we have $y_{3}-y_{2}=1 \Rightarrow y_{3}=y_{2}+1$
Finally, $n=-v_{1} \cdot v_{1}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}=2 y_{1}^{2}+y_{3}^{2}$
Thus $f$ embedding iff $n=2 a^{2}+(a+1)^{2}$, where $a \neq 0$ (if $a=0, n=1$, which is a contradiction)

Cats 3: $m \geqslant 3$
As in Case 2, we may assume $v_{m+1}=e_{1}-e_{2}, v_{m}=e_{2}-e_{3}$
Now, since $v_{m-i} \cdot v_{m-1}=-2$, again we have $v_{m-1}= \pm e_{i} \pm l_{j}$, $i \neq j$.
Assume $i=2$, then since $v_{m-1} \cdot v_{m+1}=0$, we must have $j=1$ and $v_{m-1}= \pm\left(e_{1}+e_{2}\right)$. Since $v_{m-1} \cdot v_{m-2}=1$,
we have that $v_{m-2}=\mp e_{1}+\cdots$ or $v_{m-2}=\mp e_{2}+\cdots$ Since $u_{m-2} \cdot v_{m+1}=0$, we then have $v_{m-2}=f\left(e_{1}+e_{2}\right)+\cdots$ But then $v_{m-2} \cdot v_{m-1} \neq 1$, which is a contradiction. Thus $i \neq 2$. Similarly, $i \neq 1$ and $j \neq 1,2$.
Hence $i=3$ (since $v_{m-1} v_{m}=1$ ). and we way assure $j=4$ So $V_{m-1}=e_{3}-e_{4}$.

We have: $v_{m+1}=e_{1}-e_{2}, v_{m}=e_{2}-e_{3}, V_{m-1}=e_{3}-e_{4}$
Continuing in this way (inductively) we my assume that $v_{m-i}=e_{i+2}-e_{i+3} \quad \forall 1 \leq i \leq m-2$
Let $V_{1}=\sum_{i=1}^{m+1} y_{i} i_{i}$

$$
\begin{aligned}
& v_{1} \cdot v_{m+1}=0 \Rightarrow y_{2}-y_{1}=0 \Rightarrow y_{2}=y_{1} \\
& v_{1} \cdot v_{m}=0 \Rightarrow y_{3}-y_{2}=0 \Rightarrow y_{3}=y_{2} \\
& v_{1} \cdot v_{m-i}=0 \Rightarrow y_{i+3}-y_{i+2}=0 \Rightarrow y_{i+3}=y_{i+2} \quad \forall 1 \leq i<m-2 \\
& \text { and } \\
& v_{1} \cdot v_{2}=1 \Rightarrow y_{m+1}-y_{m}=1 \Rightarrow y_{m+1}=y_{m}+1
\end{aligned}
$$

Hence $n=-v_{1} \cdot v_{1}=-y_{1}^{2}-y_{2}^{2} \cdots-y_{m+1}^{2}=-m y_{1}^{2}-\left(y_{1}+1\right)^{2}$
$\Rightarrow$ embedding $\Longleftrightarrow n=m a^{2}+(a+1)^{2}$ for $a \neq 0$.

