Solutions

1.) Claim: I a cubiquitors lattice embedding
$$\Leftrightarrow n=5$$
.
proof:
Recall I lattice embedding if and only if
 $n = a^2 + (a+i)^2$ for some $a \ge 1$.
Such a lattice embedding is given by
 $q(f_*) = ae_i + (a+i)e_2$
 $q(f_*) = e_i - e_2$
We already showed that if $a=1$ (so $n=5$),
then q is cubiquitors.
We now show that if $a>1$, q is not cubiquitors.
Ex: $a=2$

Let $C = \{0,1\}^2 + [\frac{1}{2}]$. We will show that $Im \in \Omega C = \phi$. Equivalently, we will show that $a_{X+} y = J_{1+} I$ $(a+1)_X - y = J_2$ has no integer solution $\forall J_{1,1} J_2 \in \{0,1\}$.

Solving the System over IR gives:

$$\begin{bmatrix} a & | & | & | & | & | \\ a+1 & -1 & | & h_2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & \frac{1+h_1+h_2}{2a+1} \\ 0 & | & | & \frac{-ah_2+ah_1+a+h_1+1}{2a+1} \end{bmatrix}$$

Hence the System has a unique Solution:

$$X = \frac{1+\lambda_1+\lambda_2}{2a+1}$$

$$Y = -\frac{a\lambda_2+a\lambda_1+a+\lambda_1+1}{2a+1}$$

Since
$$a \ge 2$$
 and $\lambda_1, \lambda_2 \in [0,1]$, $1 + \lambda_1 + \lambda_2 < 3 < 2a + 1$
Thus $x \notin \mathbb{Z} \implies y$ is not cubiquitous.

2) Let
$$Z = \frac{1}{2}W$$
.
For a unit cube C, let \overline{C} denote the solid unit cube.
Let $K = \{ \text{ unit cubes } C \mid Z \in \overline{C} \}$
Let Λ be the lattice generated by S.
Note: of $X \in K$, then $W - X \in K$
of $X \in \Lambda$, then $W - X \in \Lambda$

Hence
$$X \in K \cap \Lambda \iff W - x \in K \cap \Lambda$$

let $x \in K$. What is the angle between x and $W - x$?
 $X \in K \implies X = \sum_{i \in R} \frac{K_i + \Sigma_i}{2} e_i + \sum_{i \in R} \frac{K_i + 2\Sigma_i}{2} e_i + \sum_{i \in O} \mathcal{E}_i e_i$ for $\Sigma_i \in [-1_i]$?

$$= \mathcal{W} - X = \sum_{i \in \mathcal{R}} \frac{k_{i} - s_{i}}{2} e_{i} + \sum_{i \in \mathcal{R}_{e}} \frac{k_{i} - 2s_{i}}{2} e_{i} - \sum_{i \in \mathcal{O}} s_{i} e_{i}$$

$$\text{Aus} \quad \langle x_{i} W - x \rangle = \sum_{i \in \mathcal{R}_{o}} \frac{k_{i}^{2} - s_{i}^{2}}{4} + \sum_{i \in \mathcal{R}_{e}} \frac{k_{i}^{2} - 4s_{i}^{2}}{4} e_{i} - \sum_{i \in \mathcal{O}} s_{i}^{2}$$

$$= \sum_{i \in \mathcal{R}_{o}} \frac{k_{i}^{2} - 1}{4} + \sum_{i \in \mathcal{R}_{e}} \frac{k_{i}^{2} - 4s_{i}^{2}}{4} - |\mathcal{O}|$$

$$\geq O \qquad \text{Since} \qquad \sum_{i \in \mathcal{R}_{o}} \frac{k_{i}^{2} - 1}{4} + \sum_{i \in \mathcal{R}_{e}} \frac{k_{i}^{2} - 4}{4} \geq |\mathcal{O}|$$

=> The angle between x and W-x is at most 90°

Now let
$$y \in \Lambda$$
. What is the angle between y and $W - y$?
 $y \in \Lambda \implies y = \sum_{i=1}^{n} y_i \vee i$ for some $y_i \in \mathbb{Z}$ and $W - y = \sum_{i=1}^{n} (1 - y_i) \vee i$.
 $\langle y_i \vee y_i \rangle = \sum_{i=1}^{n} y_i (1 - y_i) a_i - \sum_{i=1}^{n-1} y_i (1 - y_{i+1}) - \sum_{i=1}^{n-1} y_{i+1} (1 - y_i)$ (since Σ is standard)
 $= y_i (1 - y_i) (a_{i-1}) + \sum_{i=2}^{n-2} y_i (1 - y_i) (a_{i-2}) + y_n (1 - y_n) (a_{n-1}) - \sum_{i=1}^{n-1} (y_i - y_{i+1})^2$
 $\leq O$ (since $a_i \ge 2$ $\forall i$ and $y_i (1 - y_i) \le 0$ $\forall i$)

Hence if $y \neq 0, w$, then the angle between y and W-y is greater than 90°.

If
$$\sum_{i \in R_{i}} \frac{k_{i}^{2} - i}{4} + \sum_{i \in R_{i}} \frac{k_{i}^{2} - 4}{4} > 101$$
, the have that $\langle X, W - X > \langle O \rangle$
If $X \in K$ and $\langle Y, W - Y > \geq O \rangle$ If $Y \in A$
It follows that $K \cap A = \emptyset \implies A$ is not cubiquitons.
If $\sum_{i \in R_{i}} \frac{k_{i}^{2} - 1}{4} + \sum_{j \in R_{i}} \frac{k_{j}^{2} - 4}{4} = |O|$ and $|R_{e}| \geq 2$.

Then
$$\langle x, w-x \rangle \leq 0$$
 if $x \in K$ and $\langle y, w-y \rangle \geq 0$ if $y \in \Lambda$
with equality if and only if $y \in [0, w]$.
Note that K has $2^{|Rel+|O|}$ unit cubes. Since $|Rel \geq 2$, it
follows that $\exists C \subset K$ such that $0, w \notin C$.
Consequently $C \cap \Lambda = \emptyset$. $\Rightarrow \Lambda$ is not carbiguitons.

Ø

3) Answer: I cubiquitous embedding iff
$$n=m+4$$
 or $n=m$.
We know that I lattice embedding if and only if
 $n=ma^2 + (a+1)^2$ for some $a \neq 0$.
Up to changing basis, it is given by:
 $p(f_1) = \sum_{i=1}^{n} ae_i + (a+1)e_{m+1}$
 $q(f_2) = e_m - e_{m+1}$
 $q(f_m, i) = e_i - e_2$
let $S = [q(f_1)_j - q(f_m, i)]$. Then S is a standard subset
and the Wu dement of S is $W = (a+1)e_1 + \sum_{i=2}^{m+1} ae_i$

Assume
$$a \neq -2, -1, 1$$

olf a is even, then (using the notation in previous problem),

$$\sum_{i \in R_0} \frac{k_i^2 - 1}{4} + \sum_{i \in R_0} \frac{k_i^2 - 4}{4} = \frac{a_i^2 + 2a}{4} + \frac{m(a_i^2 - 4)}{4} > 0 = 101$$
olf a is odd, then

$$\sum_{i \in R_0} \frac{k_i^2 - 1}{4} + \sum_{i \in R_0} \frac{k_i^2 - 4}{4} = m(a_i^2 + 2a)_+ \frac{a_i^2 - 4}{4} > 0 = 101$$
In either case, by problem 2, q is not cubiquitous,

Now suppose
$$a = -2$$
. Then $\sum_{i \in R_0} \frac{k_i^2 - i}{4} + \sum_{i \in R_0} \frac{k_i^2 - i}{4} = 0 = |0|$
Since $W = -e_1 - \sum_{i=1}^{n+1} 2e_i$, we have $|R_e| \ge m$
If $m \ge 2$, then by problem 2, ψ is not cubiquitons.
If $m = 1$, then it is easy to see that ψ
agrees (up to a change of basis) with the lattice
embedding given in the $a = 1$, $m = 1$ case,

It remains to show that the embeddings are
cubiquitous when
$$\alpha = -1$$
 and $\alpha = 0$.
This follows from topological reasons.