Solutions
1.) Claim: \exists a cubiquitous lattice embedding $\Leftrightarrow n=5$. proof:
Recall \exists lattice embedding if and only if $n=a^{2}+(a+1)^{2}$ for some $a \geq 1$.

Such a lattice embedding is given by

$$
\begin{aligned}
& \varphi\left(f_{1}\right)=a e_{1}+(a+1) e_{2} \\
& \varphi\left(f_{2}\right)=e_{1}-e_{2}
\end{aligned}
$$

We already showed that if $a=1$ (so $n=5$), then φ is cubiquitous.
We now show that if $a>1, \varphi$ is not cubiquitous.
Ex: $a=2$

Let $C=\{0,1\}^{2}+\left[\begin{array}{l}1 \\ 0\end{array}\right]$. We will show that $\operatorname{lm} \varphi \cap C=\phi$. Equivalently, we will show that $a x+y=\lambda_{1}+1$

$$
(a+1) x-y=\lambda_{2}
$$

has no integer solution $\forall \quad \lambda_{1}, \lambda_{2} \in\{0,1\}$.

Solving the system over \mathbb{R} gives:

$$
\left[\begin{array}{cc|c}
a & 1 & \lambda_{1}+1 \\
a+1 & -1 & \lambda_{2}
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 0 & \frac{1+\lambda_{1}+\lambda_{2}}{2 a+1} \\
0 & 1 & \frac{-a \lambda_{2}+a \lambda_{1}+a+\lambda_{1}+1}{2 a+1}
\end{array}\right]
$$

Hence the system has a unique solution:

$$
\begin{aligned}
& x=\frac{1+\lambda_{1}+\lambda_{2}}{2 a+1} \\
& y=\frac{-a \lambda_{2}+a \lambda_{1}+a+\lambda_{1}+1}{2 a+1}
\end{aligned}
$$

Since $a \geq 2$ and $\lambda_{1}, \lambda_{2} \in\{0,1\}, \quad 1+\lambda_{1}+\lambda_{2}<3<2 a+1$
This $x \notin \mathbb{Z} \Rightarrow \varphi$ is not cubiquitous.
2.) Let $z=\frac{1}{2} \omega$.

For a unit cube C, let \bar{C} denote the solid unit cube.
Let $K=\{$ unit cubes $C \mid z \in \bar{C}\}$
Let Λ be the lattice generated by S.
Note: . If $x \in K$, then $w-x \in K$
. If $x \in \Lambda$, then $\omega-x \in \Lambda$

Hence $x \in K \cap \wedge \Leftrightarrow \omega-x \in K \cap \wedge$
Let $x \in K$. What is the angle between x ard $\omega-x$?

$$
x \in K \Rightarrow x=\sum_{i \in R_{0}} \frac{k_{i}+\varepsilon_{i}}{2} e_{i}+\sum_{i \in R_{e}} \frac{k_{i}+2 \varepsilon_{i}}{2} e_{i}+\sum_{i \in \sigma} \varepsilon_{i} e_{i} \quad \text { for } \varepsilon_{i} \in\{-1,1\} \text {. }
$$

$$
\Rightarrow W-x=\sum_{i \in R_{0}} \frac{k_{i}-\varepsilon_{i} e_{i}}{2}+\sum_{i \in R_{e}} \frac{R_{i}-2 \varepsilon_{i}}{2} e_{i}-\sum_{i \in \sigma} \varepsilon_{i} \ell_{i}
$$

Thus $\langle x, \omega-x\rangle=\sum_{i \in R_{0}} \frac{k_{i}^{2}-\varepsilon_{i}^{2}}{4}+\sum_{i \in R_{e}} \frac{k_{i}^{2}-4 \varepsilon_{i}^{2}}{4} e_{i}-\sum_{i \in \theta} \varepsilon_{i}^{2}$

$$
\begin{aligned}
& =\sum_{i \in R} \frac{k_{i}^{2}-1}{4}+\sum_{i \in R_{e}} \frac{k_{i}^{2}-4}{4}-|\sigma| \\
& \geq 0 \quad \text { since } \sum_{i \in R_{0}} \frac{k_{i}^{2}-1}{4}+\sum_{i \in R_{e}} \frac{k_{i}^{2}-4}{4} \geq|\sigma|
\end{aligned}
$$

\Rightarrow The angle between x and $\omega-x$ is at most 90°
Now let $y \in \Lambda$. What is the angle between y and $W-y$?
$y \in \Lambda \Rightarrow y=\sum_{i=1}^{n} y_{i} v_{i}$ for some $y_{i} \in Z$ and $w-y=\sum_{i=1}^{n}\left(1-y_{i}\right) v_{i}$.

$$
\begin{aligned}
\langle y, w-y\rangle & =\sum_{i=1}^{n} y_{i}\left(1-y_{i}\right) a_{i}-\sum_{i=1}^{n-1} y_{i}\left(1-y_{i+1}\right)-\sum_{i=1}^{n-1} y_{i+1}\left(1-y_{i}\right) \quad(\text { since } S \text { is standard }) \\
& =y_{1}\left(1-y_{1}\right)\left(a_{1}-1\right)+\sum_{i=2}^{n-2} y_{i}\left(1-y_{i}\right)\left(a_{i}-2\right)+y_{n}\left(1-y_{n}\right)\left(a_{n}-1\right)-\sum_{i=1}^{n-1}\left(y_{i}-y_{i+1}\right)^{2} \\
& \left.\leq 0 \quad \text { (since } a_{i} \geq 2 \forall i \text { and } \quad y_{i}\left(1-y_{i}\right) \leq 0 \quad \forall i\right)
\end{aligned}
$$

\Rightarrow The angle between y and $w-y$ is at least 90° Note that $\langle y, \omega-y\rangle=0 \Leftrightarrow$ each term in the sum is 0

$$
\begin{aligned}
& \Leftrightarrow y_{i}=1 \forall i \text { or } y_{i}=0 \forall i \\
& \Leftrightarrow y=0 \text { or } y=\omega .
\end{aligned}
$$

Hence if $y \neq 0, w$, then the angle between y and why is greater than 90°.

If $\sum_{i \in A_{0}} \frac{k_{k}^{2}-1}{4}+\sum_{i \in e_{2}}^{k_{i}^{2}-4} 4|\sigma|$, the have that $\langle x, \omega-x\rangle<0$ $\forall x \in K$ and $\langle y, \omega-y\rangle \geqslant 0 \quad \forall y \in \Lambda$
It follows that $K \cap \Lambda=\varnothing \Rightarrow \Lambda$ is not cubiquitons.

If $\sum_{i \in R_{0}} \frac{k_{i}^{2}-1}{4}+\sum_{j \in R_{e}} \frac{k_{j}^{2}-4}{4}=|\sigma|$ and $\left|R_{e}\right| \geqslant 2$.
then $\langle x, \omega-x\rangle \leq 0 \quad \forall x \in K$ and $\langle y, \omega-y\rangle \geq 0 \quad \forall y \in \Lambda$ with equality if and only if $y \in\{0, \omega\}$.
Note that k has $2^{\left|R_{d}+|\sigma|\right.}$ unit cubes. Since $\mid R d \geq 2$, it follows that $\exists C C R$ such that $0, \omega \notin C$.
Consequently $c \cap \Lambda=\varnothing \Rightarrow \Lambda$ is not cubiquitous.
3.) Answer: \exists cubiquitous embedding iff $n=m+4$ or $n=m$.

We know that \exists lattice embedding if ard only if $n=m a^{2}+(a+1)^{2}$ for some $a \neq 0$.
Up to changing basis, it is given by:

$$
\begin{aligned}
& \varphi\left(f_{1}\right)=\sum_{i=1}^{m} a e_{i}+(a+1) e_{m+1} \\
& \varphi\left(f_{2}\right)=e_{m}-e_{m+1} \\
& \vdots\left(f_{m+1}\right)=e_{1}-e_{2}
\end{aligned}
$$

Let $S=\left\{\varphi\left(f_{1},\right), \longrightarrow\left(f_{m+1}\right)\right\}$. Then S is a standard subset and the W_{u} dernent of $S_{i s} W=(a+1) e_{1}+\sum_{i=2}^{m+1} e_{i}$

Assume $a \neq-2,-1,1$
-If a is even, then (using the notation in preuous problem),

$$
\sum_{i \in R_{0}} \frac{k_{i}^{2}-1}{4}+\sum_{i \in R_{a}} \frac{k_{i}^{2}-4}{4}=\frac{a^{2}+2 a}{4}+\frac{m\left(a^{2}-4\right)}{4}>0=|\sigma|
$$

- If a is odd, then

$$
\sum_{i \in R_{0}} \frac{R_{i}^{2}-1}{4}+\sum_{i \in R_{2}} \frac{k_{i}^{2}-4}{4}=m\left(\frac{\left(a^{2}+2 a\right)}{4}+\frac{a^{2}-4}{4}>0=\mid \sigma 1\right.
$$

In either case, by problem 2, φ is not cubiquitous.
Now suppose $a=-2$. Then $\sum_{i \in R_{0}} \frac{R_{i}^{2}-1}{4}+\sum_{i \in R_{a}} \frac{k_{i}^{2}-4}{4}=0=101$ Since $\omega=-e_{1}-\sum_{i=1}^{m+1} 2 e_{i}$, we have $\left|R_{e}\right| \geq m$ If $m \geq 2$, then by problem $2, \varphi$ is mot cubiquitons. If $m=1$, then it is easy to see that φ agrees (up to a charge of basis) with the lattice embedling given in the $a=1, m=1$ case.

It remains to show that the embeddings are cubiquitous when $a=-1$ and $a=0$.
this follows from topological reasons.

