Solutions

1.) Eg is easily seen to be positive definite (e.g. by checking the eigenvalues) Hence if Es is diagonalizable, I a lattice embedding $\varphi: (\mathbb{Z}^8, \mathbb{E}_8) \to (\mathbb{Z}^8, \mathbb{I})$ let Ifunts? and ieunes? be the standard basis for 2° for the domain and codomain, respectively. As in the proof of the previous homework, up to a charge of basis we have: $\varphi(f_1) = e_1 + e_2, \ \varphi(f_2) = e_2 + e_3, \dots, \ \varphi(f_2) = e_2 + e_8$ Let $\varphi(f_8) = \sum_{i=1}^{n} x_i e_i$ Since $0 = Q(f_{i}, f_{s}) = \varphi(f_{i}) - \varphi(f_{s}) = \chi_{i} + \chi_{i+1}$ $\forall i \in [1, 7, 3, 7, 5, 7]$ we have $X_i = -X_{ix_i}$ \forall 14iss, i=7 $X_1 = -X_2 = X_3 = -X_4 = X_5 = -X_6$ and $X_7 = -X_8$ Set X := X, and y := X7. Moreover, $J = Q(f_6, f_8) = \psi(f_6) \cdot \psi(f_8) = X_6 + X_7 \implies X_7 = |-X_6 \implies y =$ Finally, $2 = Q(f_8, f_8) = \varphi(f_8) \cdot \varphi(f_8) = \sum_{i=1}^{n} \chi_i^2 = 6 \chi^2 + 2(1-\chi)^2$ $\Rightarrow 2 = 6x^{2} + (1-x)^{2}$ ⇒ X=0 $\Rightarrow \varphi(f_8) = e_7 + e_8$ $\Rightarrow \varphi(f_8) \cdot \varphi(f_7) = 2$, which is a contradiction.

Thus I a lattice embedding.

2) Let
$$Q = \begin{bmatrix} -2 & i \\ i & -2 \end{bmatrix}$$

 Q is diagonalizable over IR since
Any Symmetric matrix is diagonalizable over IR
From homework 2, we know Q
Not diagonalizable over Z since Q is negative
definite but Z a lattice embedding $(Z,Q) \rightarrow (Z,T)$.