Solutions
1.) E_{8} is easily seen to be positive definite (e.g. by checking the eigenvalues) Hence if E_{8} is diagoralizable, \exists a lattice embedding $\varphi:\left(Z^{8}, E_{8}\right) \rightarrow\left(Z^{8}, I\right)$

Let $\left\{f_{1}, \ldots, f_{8}\right\}$ and $\left\{e_{1},-, e_{8}\right\}$ be the standard basis for 2^{8} for the domain and codomain, respectively.

As in the proof of the precious homework, up to a charge of basis we have:

$$
\varphi\left(f_{1}\right)=e_{1}+e_{2}, \varphi\left(f_{2}\right)=e_{2}+e_{3}, \ldots, \varphi\left(f_{7}\right)=e_{7}+e_{8}
$$

Let $\varphi\left(f_{8}\right)=\sum_{i=1}^{8} x_{i} e_{i}$.
Since $O=Q\left(f_{i}, f_{8}\right)=\varphi\left(f_{i}\right) \cdot \varphi\left(f_{z}\right)=x_{i}+x_{i+1} \quad \forall i \in\{1,2,3,4,5,7\}$ we have $x_{i}=-x_{i+1} \quad \forall 1 \leq i \leq 5, i=7$

$$
\Rightarrow \quad x_{1}=-x_{2}=x_{3}=-x_{4}=x_{5}=-x_{6} \text { and } x_{7}=-x_{8}
$$

Set $x:=x_{1}$ and $y:=x_{7}$.
Moreover, $\quad 1=Q\left(f_{6}, f_{8}\right)=\varphi\left(f_{6}\right) \cdot \varphi\left(f_{8}\right)=x_{6}+x_{7} \Rightarrow x_{7}=1-x_{6} \Rightarrow y=1-x$
Finally, $2=Q\left(f_{8}, f_{8}\right)=\varphi\left(f_{8}\right) \cdot \varphi\left(f_{8}\right)=\sum_{i=1}^{8} x_{i}^{2}=6 x^{2}+2(1-x)^{2}$

$$
\begin{aligned}
& \Rightarrow \quad 2=6 x^{2}+(1-x)^{2} \\
& \Rightarrow \quad x=0 \\
& \Rightarrow \varphi\left(f_{8}\right)=e_{7}+e_{8}
\end{aligned}
$$

$\Rightarrow \varphi\left(f_{8}\right) \cdot \varphi\left(f_{7}\right)=2$, which is a contradiction.
Thus \exists a lattice embedding.
2.) Let $Q=\left[\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right]$
Q is diagonalizable over \mathbb{R} since
Any Symmetric matrix is diagonalizable over \mathbb{R}
From homework 2, we know Q
not diagoralizable over Z since Q is negative definite but \nexists a lattice embedding $\left(\mathbb{Z}_{2}^{2}, Q\right) \rightarrow\left(\mathbb{Z}^{2},-I\right)$.

