

4.) a) Let
$$\Sigma$$
 be a spanning surface for K in S^3
Such that $g(\Sigma) = g_3(K)$.
Pushing Σ into B^4 gives a surface in B^4 .
Hence by definition, $g_4(K) \leq g(\Sigma) = g_3(K)$.
b) Take the unknot U. Since U bands a disk in
 S^3 and in B^4 , $g_5(K) = O = g_4(K)$
c) Consider $G_1 = O$
We know G_1 is slice (see notes) $\Rightarrow g_4(K) = O$.
Clearly $G_1 \neq$ unknot $\Rightarrow g_3(K) \equiv 1$.
Using Seifert's algorithm, we can find an
orientable surface Fin S^3 banded by K:
 O
We can calculate $X(F) = S - 6 = -1$
Since F is orientable and has are bandary
Component, we have $g(F) = 1$.
Hence $g_3(K) = 1$.