Solutions
1.) a) The only surfaces with $x=1$ and 3 bounder components are:

DuDus:
DuD
$D \cup M \cup M$
$D \backsim A$
c) Read the proof of Lemma 3.2 in "On x-slice pretzel links."
d)

We cen see that $P(2,2,-3,-6)$ is x-slice by using the following band moves:

3.) a)

$$
\begin{aligned}
& V=\left[\begin{array}{cc}
3 & 3 \\
0 & -6
\end{array}\right] \\
& V+V^{\top}=\left[\begin{array}{cc}
6 & 3 \\
3 & -12
\end{array}\right]
\end{aligned}
$$

$\sigma(P(3,3,-15))=0$ (since eigenvalues are opposite sign) $\operatorname{det}(P(3,3,-15))=-81=-q^{2}$
\Rightarrow we cannot obstruct slimness.

$$
\text { b) Let } Q=\left[\begin{array}{cccc}
-21 & & & \\
1-21 & & \\
1-21 & & 1 \\
& 1-2, & \\
& 1-2 & \\
& 1 & & -15
\end{array}\right]
$$

Using the usual notation, $\varphi\left(f_{i}\right)=e_{i}-e_{i+1}$ for $1 \leq i \leq 5$ and $\varphi\left(f_{6}\right)=\sum_{i=1}^{6} x_{i} e_{i}$. Since $\varphi\left(f_{i}\right) \cdot \varphi\left(f_{6}\right)=0 \quad \forall 1 \leq i \leq 4$, and $\varphi\left(f_{5}\right) \cdot \varphi\left(f_{6}\right)=1$, we have:
$x_{1}=x_{2}=x_{3}=x_{4}=x_{5}$ and $x_{6}=x_{5}+1$. Set $x:=x_{1}$.
Since $\varphi\left(f_{6}\right) \cdot \varphi\left(f_{6}\right)=-15$, we have $\sum_{i=1}^{6} x_{i}^{2}=15$

$$
\Rightarrow 5 x^{2}+(x+1)^{2}=15 \Rightarrow 6 x^{2}+2 x-14=0
$$

But $6 x^{2}+2 x-14=0$ has no integer solution, which is a contradiction.
thus \exists a lattice em bedding ard hence K is not slice
3.) a) In class, we computed $V=\left[\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right]$. Thus

$$
\Delta_{k}(t)=\operatorname{det}\left(V-t V^{\top}\right)=\operatorname{det}\left[\begin{array}{cc}
-1+t & -t \\
1 & -1+t
\end{array}\right]=(-1+t)^{2}+t=t^{2}-t+1
$$

$$
\text { c) } \begin{aligned}
\Delta_{k}(t) & =\operatorname{det}\left(V-t V^{\top}\right)=\operatorname{det}\left[\begin{array}{cc}
3-3 t & 3 \\
-3 t & -6+6 t
\end{array}\right] \\
& =-18 t^{2}+45 t-18 \doteq 18 t^{-1}-45+18 t
\end{aligned}
$$

If $\Delta_{k}(t)=f(t) \cdot f\left(t^{-1}\right)$, then $f(t)=a t+b, f\left(t^{-1}\right)=a t^{-1}+b$

$$
\begin{gathered}
\Rightarrow 18 t^{-1}-45+18 t \doteq a b t+\left(a^{2}+b^{2}\right)+a b t^{-1} \\
\Rightarrow \quad a b=-18 \Rightarrow a=6 \\
\quad a^{2}+b^{2}=45 \Rightarrow-3 \\
\Rightarrow \Delta_{k}(t)=(6 t-3)\left(6 t^{-1}-3\right)
\end{gathered}
$$

Since $\Delta_{k}(t)$ splits, the Fox-Milnor theorem cannot be used to obstruct sliceness

Note: In this example, the lattice embedding obstruction was able to obstruct sliceress, while σ, det, and Δ were not. This doesrit always happen. There are examples of knots for which Δ or σ obstruct sliceress, but the lattice embedding does not.
However, it turns out that the lattice embedding obstruction is strictly stronger than dat.

