Classification of Surfaces and
Euler Characteristic
n-dim. manifold:
A topological space that locally looks like \mathbb{R}^{n}. Defn: A topological space X^{n} is called n-dim-manifold if every pt. has a noble which is homeomorphic to \mathbb{R}^{n}.

smooth mani if every pt. has
a noble which is diffeomorphic to \mathbb{R}^{n}.

Examples
(1) O-dim mans:
\times 。

$$
\begin{aligned}
S^{0}=\partial D^{\prime} & =\partial\left(\begin{array}{lll}
0 & - & 0 \\
y_{1} & x_{2}
\end{array}\right. \\
& =\left\{\begin{array}{lll}
x_{1} & 1 & x_{2}
\end{array}\right\}
\end{aligned}
$$

$$
X: \circ
$$

(2) 1-dim man.s:

(3) 2-dim man (surfaces)

$$
\mathbb{R}^{2}
$$

(4) 3-dim man.s

$$
\begin{aligned}
& s^{3} \\
& s^{1} \times s^{2}
\end{aligned}
$$

(5)

not a man.
(not even a topological space)

cone
not a manifold
(not even a topological space)

Q: How can we build
"interesting" examples of 3-man, 4-man
Product Manifolds
M,N: topological spaces.

$$
M \times N=\{(x, y): x \in M, y \in N\}
$$

Examples:
(1)

$$
\begin{aligned}
& \mathbb{R}^{2}=\mathbb{R}_{x}^{1} \times \mathbb{R}^{\prime} \quad(x, y) \in \mathbb{R}^{2} \\
& \mathbb{R}^{3}=\mathbb{R}^{2} \times \mathbb{R}^{\prime} \\
& \vdots \\
& \mathbb{R}^{n}
\end{aligned}
$$

(2) $S^{\prime} \times S^{\prime}=T^{2}$

Prop:
If M^{m} and N^{n} are manifolds, $\Rightarrow M \times N$ is a $(m+n)$-dim man.
(3)

$$
\begin{aligned}
& T^{2} \times S^{\prime}=S^{\prime} \times S^{\prime} \times S^{\prime} \quad 3 \text {-man. } \\
& \underbrace{S^{\prime} \times \ldots \times S^{\prime}}_{n-\text { many }}=T^{n} \quad n \text {-man } .
\end{aligned}
$$

Fact: $S^{\prime} \times S^{\prime} \times S^{\prime} \underset{\text { homed }}{\neq} \mathbb{R}^{3}$
(4) $S^{1} \times S^{2}$

Fact: $S^{\prime} \times S^{2} \underset{\text { homo }}{\neq} \mathbb{R}^{3}$
(5) $S^{2} \times S^{2} \quad 4-\operatorname{man}$.
(6) $5^{1} \times s^{3} \quad 4$-man

Fact: $s^{2} \times s^{2} \underset{\text { homes }}{\neq} \mathbb{R}^{4}$

$$
s^{1} \times s^{3} \not \not \neq \mathbb{R}^{4}
$$

homeo

$$
s_{I}-x-\substack{\pi_{1}\left(s^{2}\right)=1 \\\{(x)\}}
$$

$Q:$ Can we classify man? Generalized Poincare Cons:

$$
\begin{aligned}
& x^{n} \underset{\substack{n \cdot e}}{\sim} S^{n} \Rightarrow x^{n} \underset{\text { homed }}{\sim} S^{n}(x)=1 \\
& H_{n}(x)=0 \quad \forall n \geqslant 2
\end{aligned}
$$

Smooth Poincare Conj

$$
X^{n} \underset{\text { homes }}{\approx} S^{n} \Rightarrow X^{n} \underset{\text { diffeo }}{\approx} S^{n}
$$

n	1	2	3	4	$\geqslant 5$	
G.P.C.	easy	easy	Perelman	Freedmen	Smale h-cobordism	
S.P.C	easy	easy	easy	???	known depends on dim.	
exotic $=$ homes but not differ.						

X^{n} : closed, connected, oriented n-dim. manifold.
closed $=$ compact and $\partial x=\phi$
Up to homeomorphism
$n=\alpha: \exists$ I topological man.

$$
S^{\prime}=\left\{\vec{x} \in \mathbb{R}^{2}:|\vec{x}|=d\right\}
$$

$$
S^{2}=\Sigma_{0} \times S^{\prime}=T^{2}=
$$

$n=3:$
Thm [Moishezon]
Every top 3-man admits a unique smooth str.

Poincáre Conj-[Parelman]

$$
M^{3}: \text { closed, simply-conn } \Rightarrow M \underset{\text { homeo }}{\underset{\sim}{\sim}} S^{3}
$$

$$
n=4:
$$

There are many simply conn. closed 4 -man. that admit inf .ly many distinct smooth ste.

There is no know Leman. which admit a unique smooth str.

How about if $\partial X \neq \varnothing$?
Manifolds with boundary:
Defn: An n-dim. man. with boundary is a top. space which locally looks like upper half-space in \mathbb{R}^{n}.

$$
H_{+}^{n}:=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}: x_{n} \geqslant 0\right\}
$$

Deft:
The boundary ∂M of a man. M is the set of points which doesn't have any nhl homed. \mathbb{R}^{n}.

Examples:
(1) $D^{2}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$

$$
\partial D^{2}=\left\{(x, y) \in \mathbb{R}^{2}=x^{2}+y^{2}=1\right\} \cong S^{\prime}
$$

(2) $I=[a, b]$

$$
\partial(I)=\{a\} \cup\{b\}
$$

(3) Möbius band

M

$$
\partial(M) \cong S^{\prime}
$$

(4) Torus with one boy comp.

(5) Unit Ball

$$
\begin{aligned}
& I^{n}=\underbrace{I \times I x \cdots x I}_{n+\text { times }}=B^{n} \\
& I^{n}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} \leq 1\right\}=B^{n} \\
& B^{\prime}=\left\{x \in \mathbb{R}: x^{2} \leq 1\right\}=[-1,1] \cong[0,1] \\
& \partial B^{1}=\{-1\} \cup\{1\} \cong S^{0} \\
& B^{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2} \leq 1\right\}=D^{2} \\
& \partial B^{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}=1\right\}=S^{1}
\end{aligned}
$$

$$
B^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} ; x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq 1\right\}
$$

 cube

$$
\begin{aligned}
& \partial B^{3}=\simeq S^{2} \\
& \partial B^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} ; x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
\end{aligned}
$$

In general,

$$
\begin{aligned}
& \partial B^{n} \cong S^{n-1} \\
& \partial B^{n}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in R^{n}: x_{1}^{2}+\cdots+x_{n}^{2}=1\right\} \cong S^{n-1}
\end{aligned}
$$

Stereographic Projection:

S^{n-1} intersects $x_{n}=0$ along an equator Connect N to P by a line.
That line int. $\left\{x_{n}=0\right\}$ in exactly one point say $S(P)$
$S: S^{n-1}-\{N\} \longrightarrow \mathbb{R}^{n-1}$ homeomorphism.
$\Rightarrow \mathbb{R}^{n} \cup\{p t\} \cong S^{n} \quad \begin{aligned} & \text { one point } \\ & \text { compactification }\end{aligned}$

$S: S^{2}-\{N\} \longrightarrow \mathbb{R}^{2} \quad$ homeomophison.

Submanifolds:
Let X^{n} be an n-man.
$y^{m} \subset X^{n}$ is a submanifold if
$\forall p \in Y \quad \exists$ nohds $V_{p} \subset X$ and $U_{p} \subset Y$ st.

- $U_{p} \subset V_{p}$
- $\left(U_{p}, V_{p}\right) \underset{\text { homeo }}{\simeq}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$

EX

$$
\begin{aligned}
& y^{\prime}=\left\{(x, y, z\} \in \mathbb{R}^{3}=y=0, z=0\right\} \\
& X^{3}=\mathbb{R}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex: } S^{1} \subset T^{2} \times T^{2} \\
& \text { Ex: } T^{2} \times \Sigma_{g} T^{2} \times\langle p+\} \\
& T^{2}=\underbrace{a \times d}_{\delta=\delta^{\prime}}<T^{2} \times \Sigma_{g}
\end{aligned}
$$

Defn:: "surface"
A surface is defined to be

- a Hausdorff space
- $\forall x \in X \quad \exists \cup \in \mathcal{N}(x)$ st. $U \simeq D^{2} \subset \mathbb{R}^{2}$

Examples
(1) \mathbb{R}^{2} is a surface

Since every pt. $(x, y) \in \mathbb{R}^{2}$ is contained in a neighbourhood say $D^{2}(x, y)$ which is an open disk in \mathbb{R}^{2}.
(2) s^{2}

(3) T^{2} torus

A disk-like neighbourhood about the pt. $(\sqrt{3} / 2,-\sqrt{3} / 2,0)$

Connected Sum:

$$
\begin{gathered}
X_{1}^{n} \nRightarrow X_{2}^{n}=\left[\begin{array}{c}
\left.X_{1}-D^{n}\right] \\
n-\text { disk }
\end{array} \bigcup_{\varphi}^{n}\left[X_{2}-O^{n}\right]\right. \\
\partial D^{n}=S^{n-1} \\
S_{1} \nRightarrow S_{2}=\left[X_{1}-D^{2}\right] \cup \bigcup_{\varphi}\left[X_{2}-D^{2}\right]
\end{gathered}
$$

(4) Σ_{2}

(5) Klein Bottle

(6) Cylinder: $S^{\prime} \times(0,1)$

(7) Möbius Band
which is a surface obtained out of $S_{x}^{\prime}(0,1)$ by cutting, twisting and regluing.

(8) $\| \mathbb{I}^{2}$: Real Projective Plane:
$\left\lvert\, R \mathbb{P}^{2}=\left\{\begin{array}{l}\text { space of lines in } \mathbb{R}^{3} \\ \text { through the origin. }\end{array}\right\}\right.$

$$
\begin{aligned}
& a \sim b \\
& a^{\prime} \sim b^{\prime}
\end{aligned}
$$

$$
M B \subset \mathbb{R} \mathbb{P}^{2}
$$

Q: What are the following surfaces?
(1)

\longrightarrow

$$
H_{1}\left(\tau^{2}\right)=\langle a, b i \cdots
$$

$$
=\mathbb{Z} \times \mathbb{z}
$$

Another Way:

(3) \square Cylinder
(4) \square $1 \alpha \beta \quad x=0$
(5) \square $\|R\| P^{2}$ $x=1$
(6) \square $M B X=0$

Some of these are Not embedded submanifolds of \mathbb{R}^{3}.
(7)

(8)

$$
x=0
$$

(9)

$$
x=0
$$

(10)

$$
x=1
$$

Orientability
slide a piece of paper along the surface and rotate it around.
If the normal vector of the paper has the same direction when we arrive back at the same pt., no matter how we move around the surface, then the surface is orientable. otherwise it is non-orientable.

$$
\text { orientable }=" 2 \text {-sided" }
$$

has a back and front"

Example: Möbius band is non-orientable.

Ex: $\quad \| R \mathbb{P}^{2}$ is NOT orientable
Ex: $\mathbb{R}^{2 n} p^{2 n} " u$
Ex: $\mathbb{R}^{2 n+1}$ is arientable.
$E x: \quad$ Cylinder, $S^{2}, T^{2}, \Sigma_{2} \ldots$ are all orientable.

Euler Characteristic
How to distinguish surfaces? An integer "invariant" of mans.

$$
\begin{aligned}
& X(S)=V-E+F \\
& V:=\neq \text { vertices } \\
& E:=\# \text { edges } \\
& F:=\# \text { faces }
\end{aligned}
$$

Examples:
(1)

vertices: $\{0\}$
edges: $\{a, b\}$
faces: $\{f\}$

$$
\Rightarrow x\left(T^{2}\right)=1-2 t \mid=0
$$

(2)

$$
\begin{aligned}
& \Sigma_{2} 8-g o n \\
& \Sigma_{g} 4 g-g o n
\end{aligned}
$$

$$
\begin{aligned}
& \# \text { vertices }=1 \\
& \# \text { edge }=4 \rightarrow 2 g \\
& \# \text { faces }=1
\end{aligned}
$$

$$
\Rightarrow X\left(\Sigma_{2}\right)=1-4+1=-2
$$

Q: Euler characteristic of $\underbrace{\text { a closed orientable surface? }}$
\# vertices $=1$
\# edges $=2 \mathrm{~g}$
faces $=1$

$$
\Rightarrow x\left(\Sigma_{g}\right)=1-2 g+1=2-2 g
$$

surface $=(U d i s k s) \cup(U$ bands $)$

- vertice \rightarrow disk (shrink)
- edge \rightarrow band $=$ an elongated disk

$$
Y I I I \simeq D^{2}
$$

- face \longrightarrow disk

$$
\begin{aligned}
& \text { T/L, \#vertices = } 0 \\
& x\left(D^{2}\right)=1 \\
& \text { \#faces }=1
\end{aligned}
$$

- boundary components

For connected, orientable surfaces

$$
x(s)=\# \text { disks }-\# \text { bands }
$$

Attaching a disk $\Rightarrow x+1$
Attaching a bend $\Rightarrow x-1$

Example:

\# disks $=2$
$\#$ bands $=2$
\# dry comp $=0$

$$
\Rightarrow \chi\left(T^{2}\right)=0-2+2=0
$$

Ex: (class Exercise)

$$
\alpha(p)=\alpha-\alpha+\alpha=1
$$

$$
x\left(s_{1} \nexists s_{2}\right)=x\left(s_{1}\right)+x\left(s_{2}\right)-2
$$

Example:

$$
\begin{aligned}
x\left(\Sigma_{2}\right) & =x\left(T^{2} \neq T^{2}\right) \\
& =x\left(T^{2}\right)+x\left(T^{2}\right)-2 \\
& =0+0-2=-2 \\
x\left(\bar{z}_{g}\right) & =2-2 g=-2
\end{aligned}
$$

In general

$$
\begin{aligned}
& x\left(\Sigma_{g}\right)=x\left(\neq T^{2}\right) \\
& =g x\left(t^{2}\right)-(g-1) \cdot 2 \\
& =g \cdot 0-2(g-1)=2-2 g
\end{aligned}
$$

Thm: A closed, connected surface compact $+\partial X=\varnothing$
is homed to exactly on of the following non-orient: $P, \underset{n}{\neq} \mathrm{P}=P \neq P \nRightarrow \cdots \neq P$ vrientable: $S^{2}, T^{2}, \nRightarrow T^{2}=\Sigma_{n}$

Q: Hew da we distinguish these?
Q: Is Euler characteristic enough? A: NO: we need orientability.

Thm: A compact, connected surface is homed. to exactly one of the following surfaces:

- $\underset{n}{\#} P-\left(\bigcup_{i=1}^{m} D_{i}\right)$
- \# $\underset{n}{\#} T^{2}-\left(\bigcup_{i=1}^{m} D_{i}\right) \quad O R$
- $S^{2}-\left(\bigcup_{i=1}^{m} D_{i}\right)$

Q: Hew to distinguish these?
A: Euler characteristic is NOT enough. even with orientability.
$E X: \stackrel{\cdots}{\cdots} C$

\# vertices
\# edges 3
\# faces 1
1
2

$$
x(c)=x\left(T^{2}\right)=0
$$

$C_{1} T^{2}$: compact, orientable, connected
But $C \underset{\text { nome }}{\not \approx} T^{2}$

$$
\partial(c) \neq \varnothing \quad \partial\left(T^{2}\right)=\varnothing
$$

