Classification of Surfaces and Euler Characteristic

a nobbel which is diffeomorphic to IR?

2-dim. man. (surfaces)

IR

not a man. (not even a topological space)

Cone not a manifold (not even a topological space)

Q: How can we build "interesting" examples of 3-man., 4-man. Product Manifolds M, N: topological spaces. $M_{XN} = \{(x,y) : X \in M, y \in N\}$ Examples: $(x,y) \in \mathbb{R}^{2}$ (1) $|R^2 = |R' \times |R'$ $IR^{3} = IR^{2} \times IR^{1}$ IR n

 $(5) S^{2} \times S^{2}$ 4-man. $(6) 5' \times 5^{3}$ 4 - man,

5'x S³ 7 IR⁴ homes

Q: Can we classify man.? Generalized Poincare Conf: $X^{n} \sim S^{n} \Rightarrow X^{n} \approx S^{n}$ $TT_{I}(X) = L$ $H_{n}(X) = 0 \quad \forall n \ge 2$ Smooth Poincare Conj $x^{\circ} \approx 5^{\circ} \Rightarrow x^{\circ} \cong 5^{\circ}$ diffeo homeo $n \mid 1 \mid 2 \mid 3 \mid 1 \mid 2 \mid 5$

	-	• -		7	70
G.P.C.	easy	easy	Perelman	Freedmon	Smale h-cobordism
S-P-C	eosy	easy	easy	<u>}</u> ???	pends on dim.
exotrc = homeo but not diffeo.					

X: closed, connected, oriented
n-dim. manifold.
closed := compact and
$$\partial X = \phi$$

Up to homeomorphism
 $n=L: \exists l$ topological man.

$$S' = \{ \vec{x} \in \mathbb{R}^2 : |\vec{x}| = \}$$

n=2:

 $5^2 = \overline{\Sigma}_0$

Za

C

 $(\Box$

n = 3 :

Thm [Moishezon] Every top. 3-man admits a unique smooth str. Poincare Cong. [Parelman] M³: closed, simply-conn. => M ~ 5³ n = 4:

There are many simply conn. closed 4-man. that admit in p.ly many distinct smooth str.

which admit a unique smooth str.

Defn:

The boundary DM of a man. M is the set of points which doesn't have any nobul homeo. IRⁿ.

3) Möbius beind $\partial(M) \cong S'$ 4) Torus with one body comp. \mathbb{M}

(5) Unit Ball $T^{n} = I \times I \times \cdots \times I = B^{n}$ n-times $T^{n} = \left\{ (x_{1}, x_{2}, \dots, x_{n}) \in \mathbb{R}^{n} : x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2} \leq L \right\} = B^{n}$ $B' = \{ x \in R : x^2 \leq I \} = [-1, I] \cong [0, I]$ $\partial B' = \xi - I \} \cup \xi I \cong S^{\circ}$ $B^{2} = \{ (x_{1}, x_{2}) \in |R^{2} : x_{1}^{2} + x_{2}^{2} \leq | \} = D^{2}$ $\partial B^2 = \{ (x_1, x_2) \in | R^2 : x_1^2 + x_2^2 = 1 \} = 5^{1/2}$

 $B^{2} = \{ (x_{1}, x_{2}, x_{3}) \in |R^{3}; x_{1}^{2} + x_{2}^{2} + x_{3}^{2} \leq 1 \}$

 $\partial B^{3} = \{ (x_{1}, x_{2}, x_{3}) \in |R^{3}; x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = 1 \}$

In general, $\partial B^{n} \cong S^{n-1}$ $\partial B^{n} = \{(x_{1}, \dots, x_{n}) \in | R^{n} : x_{1}^{2} + \dots + x_{n}^{2} = 1\} \cong S^{n-1}$

5 intersects Xn = O along an equator Connect N to P by a line. That line int. $\xi X_n = 0$ in exactly one point say s(p) $S: S^{n-1} - \{N\} \longrightarrow \mathbb{R}^{n-1}$ homeomorphismone point ⇒ IR"U {pt} <u>~</u> S" compactification

homeomorphism-

Defn.: "surface" A surface is defined to be

- a Hausdorff space
- $\forall x \in X \exists u \in \mathcal{M}(x) s \neq u \simeq D^2 \subset \mathbb{R}^2$

Examples (1) \mathbb{R}^2 is a surface Since every pt. $(x,y) \in \mathbb{R}^2$ is contained in a neighbourhood say $D^2(x,y)$ which is an open disk in IR².

Connected Sum:

 $X_{1}^{n} \neq X_{2}^{n} = \begin{bmatrix} X_{1} - D^{n} \end{bmatrix} \bigcup_{\substack{n \neq k \\ n \neq k}} \begin{bmatrix} X_{2} - D^{n} \end{bmatrix}$

 $\partial D^{n} = 5^{n-1}$

 $S_1 \neq S_2 = [X_1 - D^2] \bigcup_{y} [X_2 - D^2]$

Klein Bottle

6 Cylinder: 5'x (0,1)

(7) Möbius Band which is a surface obtained out of $S' \times (0,1)$ by cutting, twisting and regluing.

8) IRIP²: Real Projective Plane: $|R|P^2 = \begin{cases} space of lines in IR^3 \\ through the origin. \end{cases}$

X = |

Orientability

Slide a piece of paper along the surface and rotate it around. If the normal vector of the paper has the same direction when we arrive back at the same pt-, no matter how we move around the surface, then the surface is orientable. Otherwise it is non-orientable.

Example: Möbius band is non-orientable.

- EX: IRIP² is NOT orientable.
- Ex: IRIP " "
- EX: IRIP is orientable.

EX: Cylinder, 5², T², Z₂, are all orientable.

Euler Characteristic How to distinguish surfaces? An integer invariant of man.s.

 $\chi(S) = V - E + F$ V: = # vertices E == # edges F:=# faces

Examples:

$$= \chi(-2) = 1 - 2 + 1 = 0$$

Surface = (Udisks) U (U bands) • vertice -> disk (shrink) • edge -> band = an elongated disk VIIII ~ D _> disk . face #vertices = 0 $\chi(D^2) = \bot$ #faces = 1

boundary components

For connected, orientable surfaces

Vertices and faces edges $\chi(S) = # (disks) - # (bands)$

Attaching a disk $\Rightarrow \chi + L$ Attaching a bend $\Rightarrow \chi - I$

 $\chi(p) = L - L + L = L$

 $\chi(S_1 \# S_2) = \chi(S_1) + \chi(S_2) - 2$

Example: $\chi(\mathbf{Z}_{2}) = \chi(\mathbf{T}^{2} \neq \mathbf{T}^{2})$ $=\chi(\tau^2)+\chi(\tau^2)-2$ = 0 + 0 - 2 = -2 $\chi(z_g) = 2 - 2g = -2$ In general: $\chi(z_g) = \chi(\#T^2)$ $= g \chi(\tau^2) - (g-1) \cdot 2$ $= g \cdot 0 - 2(g - 1) = 2 - 2g$

Thm: A closed, connected surface
compact +
$$\partial X = \emptyset$$

is homeo: to exactly on of the following
non-orient: P, # P=P#P#---#P
orientable: S², T², #T² = Z_n
Q: Hew de we distinguish these?
Q: Is Ealer characteristic enough?
A: NO: we need orientability.

 $\partial(c) \neq \phi \quad \partial(\tau^2) = \phi$